Smartrouter Scoping Project — Full Report

2026-02-19

Smartrouter Scoping Project Plan

Last Updated: 2026-02-19 Status: In Progress

Overview
Field Details
Project Name Smartrouter Scoping Project
Start Date 2026-02-18
Target Completion TBD
Owner TBD
Status Planning

Goals & Success Criteria
Purpose

This is a scoping and assessment project. The goal of this phase is to nail down everything that needs to be
done and produce a clear, detailed estimate of the effort required to integrate Athia AI/ML into Deuna’s payments
service. No implementation is happening yet.

Phase 0 Deliverables (Current Focus)

o Full understanding of Deuna’s data, schema, and existing routing infrastructure
e Detailed breakdown of all work required across P-01 through P-05 use cases
 Effort estimates per workstream (engineering, data, infra, ML)

e Risk identification and open questions resolved

e Clear recommendation on what to build and in what order

Success Criteria (Phase 0)

o All open questions answered

o Effort estimate produced with confidence

o All access and dependencies identified and documented
e Stakeholder alignment on scope, timeline, and approach

Longer-Term Success Criteria (Post-Scoping)

e Measurable approval lift
e Stability during PSP outages
e Latency target: p95 < 200ms

In Scope (Phase 0 — Assessment Only)

e Understand Deuna’s data, schema, and existing routing rules

Assess Athia platform gaps vs. what’s needed

o Size effort for: Processor/Message selector, Smart Retry logic, Feedback Loop

o Identify all dependencies, blockers, and risks

Out of Scope (Phase 0)

e Any implementation or code delivery
o 3DS optimization (Phase 2)

o User-facing messaging (Phase 3)

e Installment optimization

Stakeholders

See TEAMS.md for the full source of truth on all people and roles.

Name Company Role
Pablo Deuna CTO
Israel Deuna Data POC
Farhan Deuna Claude/LLM Access POC
Mark Walick Deuna PM Lead
Rakesh Aidaptive Engineer
Naoki Aidaptive Engineer
Milestones & Timeline
Milestone Duration Status Notes
Phase 0: Assess level of 2 days In Progress $6K budget, started
effort /complexity 2026-02-18
Phase 1: Model running in 2 weeks Pending Core delivery
production for 2 processors
with basic feature store
Phase 2: Add monitoring + Week 3 Pending Immediately after Phase 1
integrate with
experimentation
Phase 3: Drift detection, TBD Pending
CI/CD, experiment ramp-up,
additional model techniques
Key Use Cases (P0)
1D Use Case Description
P-01 Outage detection & failover Fail over/back via persistent timeout

codes; random sampling of down PSP
to detect recovery

./TEAMS.md

1D Use Case Description

P-02 Overall transaction routing optimizer Optimize Deuna’s existing static rules
based on historical outcomes

P-03 Per-transaction optimal route selection = Rank top 3 routes based on prior
outcomes for fast retry

P-04 Message manipulation Toggle CIT/MIT, AVS, MCC variables
in authorization requests; top 3
recommendations

P-05 Retry optimization Subs/MIT focused; enterprise darktime
reduction; delayed retry based on
reputation

Work Breakdown / Task Tracking
Backlog

O Confirm Claude access and LLM budget provisioned (Pablo — Farhan)
K Confirm Snowflake read access provisioned — Rakesh verified (2026-02-18, info from Israel)
O Naoki to test Snowflake access once online — coordinate with Rakesh
O Provision Deuna corp accounts for Rakesh and Naoki
O Snowflake instance access for both accounts
O Code (repo) access for both accounts
O Claude Code credits for both accounts
O Complete Phase 0: assess level of effort/complexity (2 days, $6K)
O Build training platform (currently prototype-only — see Technical Gaps)
O Deliver P-01 through P-05 use cases

In Progress

o (nothing yet)

Done

 (nothing yet)

Schema Understanding & Data Notes
Extracted 2026-02-18 from PAYMENT ML Snowflake database. Full schema reference: SCHEMA .md

Overall Assessment

The schema is very well structured for the PO use cases. The data is organized into clean source views in the SOURCES
schema, and a massive denormalized flat table (ABTESTING.ALL_VIEWS_FLAT) that joins everything together — ideal
for quick EDA and feature engineering without complex joins.

Key Tables for PO Use Cases

VW_ATHENA_PAYMENT_ATTEMPT — most important table for routing & retry - Tracks every individual attempt with
sequence order, processor used, error code/category, hard/soft decline type, retry indicator, and approved status -
DYNAMIC_ROUTING_DETAIL (VARIANT/JSON) column likely contains rich routing decision metadata — needs explo-
ration - PAYMENT_ATTEMPT_SEQUENCE_ORDER + PAYMENT_LAST_ATTEMPT_INDICATOR make it easy to reconstruct the
full retry chain per payment - Directly supports P-03 (per-transaction route selection) and P-05 (retry optimization)

./SCHEMA.md

VW_SMART_ROUTING_ATTEMPTS — current routing engine event log - Captures per-attempt routing decisions: algo-
rithm type, processor selected, process time, result status, skip reason - PROPERTIES_RESULT_PROCESS_TIME is a
direct latency signal for the p95 < 200ms target - PROPERTIES_RESULT_SKIPPED_REASON tells us why processors
were bypassed — key for P-01 (outage detection) - PROPERTIES_ALGORITHM_TYPE reveals what routing strategies
are already in use

VW_ROUTING_MERCHANT_RULE + related views — existing rules engine - Deuna already has a rules-based routing
system with conditions, members, options, and priority ordering - This is the foundation for P-02 (optimize existing
static rules) — we don’t start from scratch - SHADOW_MODE in VW_ROUTING_MERCHANT_RULE_MEMBER suggests there’s
already infrastructure for testing new processors without live traffic

Feature Richness for ML Models

The data has strong signal across multiple dimensions:

Feature Group Key Columns Usefulness

Retry history NUM_ATTEMPTS_ORDER, Direct retry optimization signals
PREVIOUS_ORDER_ERROR_CODE,
PREVIOUS_ORDER_PROCESSOR,
AVG_SEC_BETWEEN_PAYMENT_ATTEMPS

Error signals ERROR_CODE, ERROR_CATEGORY, Distinguish hard vs soft declines;
HARD_SOFT, normalized error codes in events
EVENT_ERROR_STANDARD_ERROR_CODE

Card signals CARD_BIN, CARD_BRAND, BANK, Processor affinity by card type
CARD_COUNTRY

User behavior TARGET_USER_FRAUD_RATE_COHORT, User risk and engagement signals

TARGET_USER_TENURE_IN_DAYS,
TARGET_USER_FREQUENCY_VALUE,
TOTA_MINUTES_BROWSING,
TOTAL_NUM_SESSIONS

RFM TARGET_USER_FREQUENCY_VALUE, Customer value for routing priority
TARGET_USER_RECENCY_VALUE,
TARGET_USER_MONETARY_VALUE

Geo LATITUDE, LONGITUDE, Geography-based processor routing
ORDER_COUNTRY_CODE, WEATHER_MAIN

Device TARGET_USER_BROWSER, TARGET_USER_0S, Device fingerprinting
TARGET_USER_DEVICE

Message config MCI_MSI_TYPE, ORDER_MCI_MSI_TYPE, CHTVB&YFtOggkatraddng for P-04
PAYMENT _ATTEMPT_METHOD_TYPE

3DS CHALLENGE_3DS_INDICATOR, Available now; scoped to Phase 2

CHALLENGE_3DS_STATUS

Starting Point Recommendation

e Use ABTESTING.ALL_VIEWS_FLAT for initial EDA — everything is already joined

e Switch to individual SOURCES views for model training to avoid data leakage and redundancy

o Explore DYNAMIC_ROUTING_DETAIL VARIANT column in VW_ATHENA_PAYMENT_ATTEMPT early — may contain
routing features not exposed elsewhere

Notable Data Quality Observations

e Typo in source data: PATMENT_TIME in VW_ATHENA_PAYMENT (should be PAYMENT_TIME) — minor but worth
noting for pipelines
e Airline-specific data: VW_ORDER_AIRLINE_DETAIL_ALL and VW_ORDER_AIRLINE_INFORMATION_DETAIL_ALL

suggest Volaris is a key merchant with rich flight/passenger metadata

e SOURCES schema has no raw tables — only views, meaning underlying raw tables are managed upstream by
Deuna’s data team (Israel’s domain)

Technical Gaps (from SOW)

Testing/Experimentation Platform — Production Ready

o A/B testing infrastructure, multi-variant experiments, automated winner selection

o Model registry with versioning, real-time inference (FastAPI sidecar)

e Missing: canary deployments

Training Platform — Prototype Only (needs significant work)

Current State

Gap Tracking

Component

Status

Notes

Basic training scripts
Snowflake data access

Logistic Regression model Prototype No real ML pipeline

Partial

Prototype 3 models — NOT production-ready

Manual queries only

Gap Category Priority Status Notes
G-01 Automated Automation High Not started 100% manual
retraining execution today
G-02 Orchestration Infrastructure High Not started No scheduling,
retries, or workflow
management
G-03 CI/CD pipeline DevOps High Not started No testing, no
deployment
automation
G-04 Data validation Data Quality High Not started No quality checks
on inputs
G-05 Model monitoring Observability High Not started Can’t detect model
degradation
G-06 Deployment Automation High Not started Manual file
automation uploads to EFS
today
G-07 Model registration Automation Medium Not started Manual API calls
automation today
G-08 Feature store ML Infrastructure High Not started Features
recomputed each
time — no caching
G-09 Drift detection Observability Medium Not started No alerts when

data/model drifts

Gap Category Priority Status Notes

G-10 Lineage tracking Governance Medium Not started Can’t trace which
data produced
which model

G-11 Hyperparameter ML Quality Medium Not started Fixed parameters
tuning only
G-12 Algorithm ML Quality Medium Not started Single algorithm
comparison (Logistic
Regression) only
G-13 Versioning Governance High Not started Manual version
workflow management
G-14 Rollback capability Reliability High Not started Can’t revert bad
models

Summary by Category

Category Gaps Notes

Automation G-01, G-03, G-06, G-07 Core pipeline work — needed before any production use

Infrastructure G-02, G-08 Orchestration + feature store are foundational
Observability G-05, G-09 Monitoring + drift detection — needed post-deploy
Governance G-10, G-13 Lineage + versioning — important for auditability
Reliability G-14 Rollback — critical for safe production deployment

ML Quality G-11, G-12 Nice to have in Phase 1; important for long-term quality
Data Quality G-04 Validate inputs before training

Effort Assessment

To be filled in during Phase 0 assessment.

Gap Estimated Effort Dependencies Owner
G-01 Automated retraining TBD G-02, G-08 TBD
G-02 Orchestration TBD TBD
G-03 CI/CD TBD TBD
G-04 Data validation TBD G-08 TBD
G-05 Model monitoring TBD G-06 TBD
G-06 Deployment automation TBD G-03 TBD
G-07 Model registration automation TBD G-06 TBD
G-08 Feature store TBD TBD
G-09 Drift detection TBD G-05 TBD
G-10 Lineage tracking TBD G-07, G-13 TBD
G-11 Hyperparameter tuning TBD G-01 TBD
G-12 Algorithm comparison TBD G-01 TBD
G-13 Versioning workflow TBD G-06 TBD
G-14 Rollback capability TBD G-13 TBD

Recommended Build Order
1. Foundation: G-02 Orchestration — G-08 Feature store — G-04 Data validation

P

Automation: G-03 CI/CD — G-06 Deployment automation — G-07 Model registration — G-01 Automated
retraining

Governance: G-13 Versioning — G-10 Lineage — G-14 Rollback

Observability: G-05 Monitoring — G-09 Drift detection

ML Quality: G-11 Hyperparameter tuning — G-12 Algorithm comparison

Next Steps

Immediate Blockers to Resolve

O
]
]

Claude/LLM access & budget — Pablo to follow up with Farhan
Provision Deuna corp accounts for Rakesh & Naoki (Snowflake, code/repo, Claude Code credits)
Naoki to test Snowflake access once online — coordinate with Rakesh

Phase 0 Assessment Work

]
(]
]

O
]
]

Explore DYNAMIC_ROUTING_DETAIL JSON column in VW_ATHENA_PAYMENT_ATTEMPT — likely contains rich rout-
ing metadata not exposed elsewhere

Run EDA on ABTESTING.ALL_VIEWS_FLAT — understand data volumes, date ranges, merchant mix, approval
rates, processor distribution

Map existing routing rules — query VW_ROUTING_MERCHANT_RULE and related views to understand current rule
engine

Assess Athia training platform gaps — produce concrete list of what needs to be built vs. what already exists
Size effort per use case (P-01 through P-05) — engineering, data, infra, and ML effort per workstream
Identify risks and open questions — populate the Risks and Open Questions sections below

Documentation & Alignment

]
]

Fill in Open Questions section — capture anything still unclear from the Deuna side
Produce final Phase 0 deliverable — effort estimate doc with work breakdown, risks, and recommended build
order for stakeholder sign-off

Decisions Log

Date Decision Rationale Made By

2026-02-18 Latency target updated from Revised from original SOW Rakesh (discussed with
p95 < 50ms to p95 < 200ms spec Pablo)

Open Questions

Question Owner Status

1 Claude/LLM access & Pablo — Farhan Open
budget — when will this be
provisioned?

2 Are ATHIA__PREDICTIONS Israel / Rakesh Open

/ ATHIA_ FEEDBACK
tables populated in Deuna’s
Snowflake today?

Question Owner Status

Are SageMaker endpoints Rakesh Open
currently live for

processor_selector /

retry_ predictor?

Is there a live model in Rakesh Open
MODEL__ARTIFACTS that

Deuna’s payment service is

calling today?

What is the current payment Israel Open
volume through the routing

engine? (Validates A/B test

sample size feasibility)

Who owns athena-platform Pablo / Rakesh Open
Go repo deployments —
Aidaptive or Deuna infra?

Risks & Issues

ID Description Likelihood Impact Mitigation Status

R1 TBD Low/Med/High Low/Med/High TBD Open

Repository Analysis & Code Intelligence

Analyzed: 2026-02-19 — Both Deuna repos cloned and analyzed in full. Repos: DATA-Athena-
Snowflake | athena-platform

Repo 1: DATA-Athena-Snowflake — LLM Analytics Platform

What it is: A Python-based (FastAPI + LangGraph/LangChain) multi-agent AI platform. This is Athia’s data
intelligence layer — it uses LLMs (GPT-4o, Claude 3.7 Sonnet via Bedrock) to analyze Snowflake data, detect
anomalies, and generate payment optimization strategies.

This is NOT a training platform. It produces LLM-generated strategies and insights — not trained ML models.

Architecture

Framework: FastAPI + LangGraph (stimulus-response multi-agent pattern)

LLM Backend: OpenAI GPT-4o0 (default), AWS Bedrock (Amazon Nova, Claude 3.7 Sonnet)

Data Layer: Snowflake Snowpark with async session pooling, Jinja2-templated SQL queries

Deployment: AWS Lambda + ECS + Bedrock AgentCore + SQS, CI/CD via GitHub Actions

Metrics Layer: Centralized YAML-defined metrics with Jinja2 SQL templates (acceptance rate, fraud_ rate,
3ds_approval_rate, effective_cost_rate, chargeback_ rate)

Implemented Workflows (11 stimuli)

https://github.com/DUNA-E-Commmerce/DATA-Athena-Snowflake
https://github.com/DUNA-E-Commmerce/DATA-Athena-Snowflake
https://github.com/DUNA-E-Commmerce/athena-platform

Stimulus Purpose Status

acceptance_rate_analysis_requested Detect acceptance rate drops, processor Implemented (vO_1, v1_0)
issues, BIN anomalies

fraud_card_analysis_requested Fraud detection: card testing, false Implemented (v0_1)
positives, geographic patterns
cost_optimization_analysis_requested Payment processing cost analysis Early stage
strategy_generation_initiated Orchestrate analysts and rank strategic Partially implemented
recommendations
metrics_anomaly_research_triggered Automated anomaly detection and Implemented
trend analysis
user_question_submitted Conversational chatbot for data queries Implemented
data_analyst_requested SQL generation and data visualization = Implemented
researcher_assistance_requested Comprehensive research with parallel Implemented
deep-dive explorers
deep_exploration_needed Root cause analysis for metric anomalies Implemented
element_edition_requested SQL query modification Implemented
knowledge_expert_asked External knowledge base via MCP Implemented

Relevance to PO Use Cases

o P-02 (Routing optimizer): acceptance_rate_analysis_requested workflow already analyzes processor
performance and generates routing recommendations. This is a direct input to routing optimization.

o P-05 (Retry optimization): No retry-specific workflow exists yet. The acceptance_rate_attempt metric
tracks retry attempts, but there is no dedicated retry analysis or routing workflow. This is a gap we need
to fill.

e P-01 (Outage detection): No outage/failover workflow — this lives in the serving platform (athena-
platform), not here.

Gaps Found in This Repo

o Strategy Director incomplete: The Matcher node has an exit () placeholder; Ranker uses dummy prompts.

e No retry workflow: No dedicated stimulus for retry optimization or retry routing.

e No traditional ML: Entirely LLM-based — no scikit-learn, XGBoost, neural nets. All pattern detection uses
hardcoded thresholds (e.g., 15% drop threshold for acceptance rate).

o No adaptive thresholds: Fraud detection windows (60-80 min) and drop thresholds are hardcoded.

o Limited error recovery: No circuit breaker pattern; cascading failures bring down the whole workflow.

Repo 2: athena-platform — ML Serving & Experimentation Platform

What it is: A production Go (Gin) REST API that serves ML predictions, manages model experiments (A/B
testing), and handles the full model lifecycle. This is the component that Deuna’s payment service calls to get
routing decisions in real time.

Architecture

o Language/Framework: Go + Gin (Clean Architecture)

o Databases: PostgreSQL (RDS Multi-AZ) + Redis (ElastiCache) for caching

« ML Backends: AWS SageMaker, Snowflake Cortex, custom HTTP endpoints

« Snowflake Integration: JWT-based private key auth; queries ATHIA_ PREDICTIONS, ATHIA_ FEEDBACK,
ATHIA_ TRAINING_DATASET, ATHIA_ EXPERIMENT_ LIFT

o Deployment: ECS Fargate + ALB (mTLS enforced for /api/v1/ml/predict/*) + EFS for model storage

ML Model Registry (Already Implemented)

Inference Type Description Maps to Use Case

processor_selector Ranks available processors by approval P-03: Per-transaction route selection
probability

retry_predictor Predicts retry success probability P-05: Retry optimization

retry_sequence Predicts optimal retry processor order P-05: Retry optimization

installment_optimizer Predicts best installment options Out of scope Phase 1

Key finding: The model registry schema (MODEL_ARTIFACTS, MODEL_EXPERIMENTS, MODEL_EXPERIMENT_VARIANTS)
and inference API are already built. What’s missing is the training pipeline that produces models to register
here.

A /B Experimentation System (Production-Ready)

o Bucketing: SHA256(transaction_id) % 10000 — deterministic and reproducible
o Traffic splits: Basis points (bps) — e.g., 30% control / 70% treatment
e Auto-winner evaluation: Statistical significance testing with full guardrails:
— Minimum 7 days runtime
— Minimum 1000 samples per variant
— p-value < 0.05 (95% confidence)
Minimum 1% absolute lift
— Latency regression guard: 10%
— Revenue regression guard: -5%
e Dry run mode: Safe default for testing evaluation logic before enabling real rollouts
e« Merchant-specific experiments: Experiments can be scoped to specific merchant IDs

Snowflake Tables for Training & Monitoring

Table Purpose Status

ATHIA_PREDICTIONS Model inputs + outputs per prediction Active

ATHIA_FEEDBACK Transaction outcomes Active
(approved/declined)

ATHIA_TRAINING_DATASET Predictions + feedback joined for Active
retraining

ATHIA_EXPERIMENT_LIFT Aggregated experiment metrics for Active
auto-winner

ATHIA_STAGE_OUTCOMES Per-stage funnel outcomes (installment Designed, not deployed
— processor — retry)

ATHIA_SESSION_SUMMARY Full session-level aggregations Designed, not deployed

Gaps Found in This Repo

e Analytics tables not deployed: ATHIA_STAGE_OUTCOMES and ATHIA_SESSION_SUMMARY tables exist in design
docs but are not created in Snowflake. Multi-stage funnel analysis is blocked.

o No production monitoring dashboards: Grafana setup exists locally (docker-compose) but no alert rules
or production dashboards are configured.

o No training pipeline: Model artifacts (SageMaker ARNs, Cortex endpoints) must currently be registered
manually via API. No automated training — registration workflow.

o Cache invalidation is manual: Experiment assignment cache (Redis, 24h TTL) has no auto-invalidation on
config changes.

o« LLM integration partial: Bedrock client and prompt templates exist, but full agent orchestration is not
complete.

10

e No rate limiting: No global rate limiting middleware — only per-user, per-feature quotas.

Impact on Effort Estimates

This analysis materially changes our understanding of the effort required. Here is what we learned:

What’s Already Built (Reduces Effort)

Area

What Exists

Gap Gaps Affected

Model serving API

Model registry
A /B experimentation

Snowflake feedback loop

LLM analytics

CI/CD skeleton

Full Go REST API with
processor__selector + retry_ predictor
endpoints

ModelArtifact + Experiment +
ExperimentVariant tables + CRUD API

Full auto-winner system with statistical
guardrails

ATHIA_PREDICTIONS +
ATHIA_FEEDBACK +
ATHIA_TRAINING__DATASET tables
Acceptance rate + fraud workflows for
insights

GitHub Actions workflows for both
repos

Reduces P-03, P-05 integration work

Reduces G-07 effort

Reduces P-02 work

Reduces G-05, G-08 baseline work

Can accelerate P-02 analysis

Reduces G-03 baseline work

What Still Needs to Be Built

Area

Specific Work

Gaps

Training pipeline
Feature store
Orchestration
Analytics tables
Production monitoring

Retry workflow (LLM)

Strategy Director
Data validation
Versioning

Lineage tracking
Rollback capability

Drift detection

Automated end-to-end training —
model registration

Consistent feature computation +
serving (Redis-backed)

Scheduled + trigger-based training runs

Deploy ATHIA_ STAGE__OUTCOMES
+ ATHIA_SESSION_SUMMARY in
Snowflake

Grafana dashboards + alerting rules for
model performance

New stimulus
retry_optimization_requested in

DATA-Athena-Snowflake

Finish matcher + ranker nodes in
DATA-Athena-Snowflake

Add schema + statistical validation to
training pipeline

Automated version bumping +
metadata tagging on training runs

Record data — feature — model —
deployment lineage

One-command rollback to previous
registered model

Feature + prediction distribution
monitoring

11

G-01, G-06, G-07

G-08

G-02

G-05

G-05, G-09

P-05

Area

Specific Work Gaps

Hyperparameter tuning Integrate Optuna/Ray Tune into G-11

training pipeline

Algorithm comparison Add XGBoost/Light GBM /NN G-12

alternatives to Logistic Regression

Open Questions Raised by Repo Analysis

#

Question Owner Status

Q-R1

Q-R2

Q-R3

Q-R4

Q-R5

Are ATHIA PREDICTIONS Israel / Rakesh Open
and ATHIA_FEEDBACK

tables already populated in

Deuna’s Snowflake, or only in

Athia’s internal Snowflake?

Are SageMaker endpoints Rakesh Open
currently live for

processor__selector /

retry__predictor, or are they

placeholders?

Is there a working model in Rakesh Open
MODEL__ ARTIFACTS that

Deuna’s payment service is

actually calling today?

What is the current payment Israel Open
volume through the routing

engine? (Needed to validate

sample size requirements for

A /B tests)

Who owns the Pablo / Rakesh Open
athena-platform Go repo

deployment? Aidaptive or

Deuna infra?

Notes & Meeting Log
2026-02-19

Analyzed both Deuna GitHub repositories in full: DATA-Athena-Snowflake and athena-platform.

Key finding: athena-platform is a production-ready Go REST API with model registry, A/B testing, and
auto-winner selection already built. The missing piece is the training pipeline.

Key finding: DATA-Athena-Snowflake is an LLM-based analytics platform (not ML training). It generates
strategies via GPT-40 / Claude, not trained models.

The inference types processor_selector and retry_predictor already exist in the model registry schema —
these map directly to P-03 and P-05.

No retry-specific workflow exists in DATA-Athena-Snowflake — this needs to be built.

Several analytics Snowflake tables (ATHIA_STAGE_OUTCOMES, ATHIA_SESSION_SUMMARY) are designed but not
deployed. This affects multi-stage monitoring.

Open questions added: live model status, ATHIA _ table status in Deuna Snowflake, payment volume for A /B
test sizing.

12

2026-02-18

e Project plan file created. Details to be filled in.
e Israel is the main POC for data and related topics.
o Pablo is the CTO.
o All data is in Snowflake database; we will get read access to all tables. Snowflake URL: VLTAXPW-RMONTES . snowflakecomput
e Need Claude access and budget for LLM. Farhan is the main POC; Pablo will be talking to Farhan to get this
access.
e Mark Walick is the PM lead for this project.

Project Plan Exports

Date File Notes

2026-02-18 project-plan-2026-02-18.pdf Initial export

2026-02-18 project-plan-2026-02-18-v2.pdf Updated with schema notes,
stakeholders, todos

2026-02-18 project-plan-2026-02-18-v3.pdf Updated with TEAMS.md reference,
Mark Walick correction

2026-02-18 project-plan-2026-02-18-v4.pdf Self-contained: includes project plan +
teams + schema

2026-02-18 project-plan-2026-02-18-v5.pdf Updated project purpose to reflect
scoping nature

2026-02-18 project-plan-2026-02-18-v6.pdf Improved table formatting — fixed
column overlaps

2026-02-18 project-plan-2026-02-18-v7.pdf Latest snapshot

2026-02-18 project-plan-2026-02-18-v8.pdf Refocused Phase 0 as assessment-only
with clear deliverables

2026-02-18 project-plan-2026-02-18-v9.pdf Added Next Steps section

2026-02-18 schema-2026-02-18.pdf Initial Snowflake schema snapshot

Documents & SOW Snapshots

Document Date Version File

SOW: Athia Embedded into 2026-02-16 vl PDF
Acceptance - Phase 1

References & Links

o CLAUDE.md (project conventions)

o Deuna Code Repository (GitHub Org)

« Snowflake Data Repository

e Platform Repository

e Data Dictionary

o Athia Data Model

o Snowflake Login (VLTAXPW-RMONTES.snowflakecomputing.com)

13

https://github.com/DUNA-E-Commmerce
https://github.com/DUNA-E-Commmerce/DATA-Athena-Snowflake
https://github.com/DUNA-E-Commmerce/athena-platform
https://docs.google.com/spreadsheets/d/1N8lCQv3X3Jrt_Suu9DDTKhLZHsPEE2gEqt9lXesOypM/edit?gid=312089055#gid=312089055
https://lucid.app/lucidchart/7f3d9536-ef76-40c7-8b81-7cafe9e63549/edit?viewport_loc=926%2C-156%2C3262%2C1900%2Ch.0So5b9RzNJ&invitationId=inv_1f973c65-a673-45bc-a7da-4945ac39d7a2
https://vltaxpw-rmontes.snowflakecomputing.com/console/login

Teams & Stakeholders

Source of truth for all people involved in the Smartrouter Scoping Project. Last Updated: 2026-02-18

Deuna
Name Role Responsibilities
Pablo CTO Executive sponsor; coordinating Claude/LLM access via Farhan
Israel Data POC Main point of contact for data and Snowflake access
Farhan Claude/LLM Access POC Provisioning Claude access and budget
Mark Walick PM Lead Product management lead
Aidaptive
Name Role Responsibilities

Rakesh Engineer Engineering lead; Snowflake access verified

Naoki Engineer Engineering; Snowflake access pending test

Key Contacts by Topic

Topic Owner Notes
Data / Snowflake Israel (Deuna) All data questions, schema, access
Claude / LLM Budget Farhan (Deuna) Pablo coordinating with Farhan

Project Management ~ Mark Walick (Deuna)

Engineering

Rakesh + Naoki (Aidaptive) Coordinate with each other on access/setup

Executive Decisions Pablo (Deuna) CTO sign-off

Snowflake Schema Reference

Database: PAYMENT_ML Instance: VLTAXPW-RMONTES. snowflakecomputing.com Extracted: 2026-02-18

Overview
Schema Type Object Columns
ABTESTING Table ALL VIEWS FLAT ~319 (denormalized flat table)
ABTESTING Table ALL_VIEWS_ FLAT SAMPLE ~319 (sample of above)
SOURCES View VW_ATHENA_ CHANNEL 2
SOURCES View VW_ATHENA_ ORDER 85
SOURCES View VW_ATHENA_ORDER_COMPLEMENT 11

14

Schema Type Object Columns
SOURCES View VW_ATHENA_PAYMENT 46
SOURCES View VW_ATHENA_ PAYMENT_ ATTEMPT 39
SOURCES View VW_ATHENA_ PAYMENT_ EVENTS 28
SOURCES View VW_ATHENA_TARGET_USER 40
SOURCES View VW_ORDER_AIRLINE_DETAIL_ALL 29
SOURCES View VW_ORDER,_AIRLINE_INFORMATION_DETAIL_ALL 51
SOURCES View VW_ROUTING_MERCHANT_ RULE 14
SOURCES View VW_ROUTING_MERCHANT_ RULE_CONDITION 16
SOURCES View VW_ROUTING MERCHANT RULE MEMBER 15
SOURCES View VW_ROUTING_MERCHANT_ RULE_OPTION

SOURCES View VW_ROUTING_MERCHANT_ RULE_OPTION_VALUES 8
SOURCES View VW_SMART_ ROUTING_ATTEMPTS 40

Schema: ABTESTING

Denormalized flat tables joining all Athena views — used for A/B testing analysis.

ALL_VIEWS_FLAT / ALL_VIEWS_FLAT_SAMPLE

Both tables share the same ~319 columns. ALL_VIEWS_FLAT_SAMPLE is a sampled subset.

Key column groups:

Group Columns

Identity SOURCE_TABLE_NAME, CHANNEL_ID, CHANNEL_NAME,
COMMERCE_ID, TARGET_USER_ID, USER_ACCOUNT_ID

Order ORDER_ID, ORDER_DATE, ORDER_TIME, ORDER_STATUS

Order Indicators

Order Amounts

Payment

Payment Attempt

Event

Card
Fraud

ORDER_TOKEN, COMMERCE_STORE_CODE

ORDER_APPROVED_INDICATOR, ORDER_REJECTED_INDICATOR,
ORDER_SEND_TO_SMART_ROUTING_INDICATOR,
ORDER_RECOVERED_BY_SMART_ROUTING_INDICATOR,
ORDER_APPROVED_BY_FIRST_PROCESSOR_INDICATOR,
ORDER_DENIED_BY_FRAUD_INDICATOR,
ORDER_DENIED_BY_PROCESSOR_INDICATOR

ORDER_ORIGINAL_GMV_AMOUNT, ORDER_GMV_AMOUNT_USD,
ORDER_AUTH_AMOUNT_USD, ORDER_CAPTURE_AMOUNT_USD,

ORDER_TOTAL_AMOUNT_USD

PAYMENT_ID, PAYMENT_DATE, PAYMENT_STATUS
PROCESSOR_NAME, PAYMENT_AMOUNT _USD

PAYMENT _ATTEMPT_ID, PAYMENT _ATTEMPT_SEQUENCE_ORDER,

PAYMENT _ATTEMPT_STATUS,

PAYMENT_ATTEMPT_PROCESSOR_NAME,
PAYMENT_ATTEMPT_ERROR_CODE,
PAYMENT_ATTEMPT_APPROVED_INDICATOR

EVENT_TYPE, EVENT_STATUS, EVENT_CREATED_AT,
EVENT_ERROR_CODE, EVENT_ERROR_STANDARD_ERROR_CODE

CARD_BIN, CARD_BRAND, CARD_LAST_FOUR, CARD_COUNTRY, BANK

FRAUD_PROCESSOR_NAME, FRAUD_RISK_LEVEL,
FRAUD_RISK_SCORE, FRAUD_STATUS

15

Group

Columns

User

Routing Rules

Geo

Airline

TARGET_USER_BROWSER, TARGET_USER_0S,
TARGET_USER_DEVICE, TARGET_USER_FRAUD_RATE_COHORT,
TARGET_USER_TENURE_IN_DAYS

RULE_ID, PROPERTIES__RULES_LABEL,
MERCHANT_PAYMENT_PROCESSOR_NAME,
COMMERCE_ROUTING_MERCHANT_RULE_VERSION_ID

LATITUDE, LONGITUDE, ORDER_CITY_NAME, ORDER_STATE_NAME,
ORDER_COUNTRY_CODE, WEATHER_MAIN

PNR, FLIGHT _NUMBER, CARRIER_CODE,
DESTINATION_IATA_CODE, TOTAL_PASSENGER

Schema: SOURCES

Raw source views feeding the ABTESTING schema. Join key across most views: COMMERCE_ID, ORDER_ID,

PAYMENT_ID, PAYMENT_ATTEMPT_ID.

VW__ATHENA_CHANNEL (2 cols)
Channel lookup table.

Column

Type

CHANNEL_ID

NUMBER(5,0)

CHANNEL NAME VARCHAR

VW_ATHENA__ORDER (85 cols)

Core order-level data including status, amounts, payment method, behavioral signals, and geo.

Column Type Notes

COMMERCE__ID VARCHAR Merchant 1D
TARGET_USER_ID VARCHAR(32) User ID
USER_ACCOUNT_ID VARCHAR(32)

CHANNEL_ID NUMBER

ORDER_ID VARCHAR Primary key
ORDER_DATE / ORDER_ TIME DATE / TIME

ORDER_ STATUS VARCHAR

ORDER__APPROVED_ INDICATOR BOOLEAN
ORDER_SEND_TO_SMART_ROUTING_INDICATOR BOOLEAN Was smart routing used?
ORDER_RECOVERED BY SMART ROUTING INDICATOR BOOLEAN Did smart routing recover?
ORDER_DENIED_BY_ FRAUD_INDICATOR BOOLEAN

ORDER_ ORIGINAL_GMV_AMOUNT / _USD FLOAT
ORDER_AUTH_AMOUNT_USD FLOAT
ORDER_TOTAL_AMOUNT_USD FLOAT

PAYMENT CURRENCY VARCHAR

16

Column Type Notes

CARD_LAST FOUR / CARD_COUNTRY VARCHAR

DEVICEID / REQUEST_IP VARCHAR

USER_IS GUEST BOOLEAN

TOTA_MINUTES BROWSING NUMBER Behavioral feature
TOTAL_EVENTS_ BEFORE_PURCHASE NUMBER Behavioral feature
TOTAL NUM_SESSIONS NUMBER Behavioral feature
LATITUDE / LONGITUDE NUMBER

WEATHER_ MAIN VARCHAR

ORDER_ TOKEN VARCHAR(100)

VW_ATHENA__ORDER__COMPLEMENT (11 cols)
Fraud and 3DS signals at the order level.

Column Type
COMMERCE_ ID VARCHAR
CHANNEL_ID NUMBER
ORDER_ID VARCHAR
FRAUD_PROCESSOR_NAME VARCHAR
FRAUD_RISK_LEVEL VARCHAR
FRAUD_RISK_SCORE FLOAT
FRAUD_STATUS VARCHAR
SITEDOMAIN VARCHAR
WEBSITENAME VARCHAR
CHALLENGE_3DS_INDICATOR BOOLEAN
CHALLENGE_3DS__STATUS VARCHAR

VW__ATHENA_PAYMENT (46 cols)

Payment-level data: processor, card info, error codes, routing rules.

Column Type Notes
PAYMENT ID VARCHAR(250) Primary key
ORDER _ID VARCHAR FK — Order
PAYMENT DATE / PATMENT TIME DATE / TIME Note: typo in source (PATMENT)
PAYMENT_STATUS VARCHAR
PROCESSOR_NAME VARCHAR

CARD_BIN / CARD_BRAND / BANK VARCHAR
NUM_ATTEMPTS_ORDER NUMBER
NUM_ATTEMPTS SMART ROUTING NUMBER
ERROR_MESSAGE / ERROR_CODE / ERROR_CATEGORY VARCHAR

PAYMENT AMOUNT_USD FLOAT

HARD SOFT VARCHAR Hard vs soft decline

17

Column Type Notes

RULE_ID VARCHAR Routing rule applied
PROPERTIES RULES_LABEL VARCHAR
MERCHANT_PAYMENT_PROCESSOR_NAME VARCHAR

MERCHANT_PAYMENT_ PROCESSOR_ID VARCHAR
PREVIOUS__ORDER_ERROR__CODE VARCHAR Prior attempt context
PREVIOUS_ORDER_ PROCESSOR VARCHAR

AUTHORIZATION__ CODE VARCHAR

COMMERCE_ROUTING_MERCHANT RULE_VERSION_ID VARCHAR(36)

VW__ATHENA_PAYMENT__ATTEMPT (39 cols)

Individual attempt-level data — key table for retry optimization.

Column Type Notes
PAYMENT_ATTEMPT_ID VARCHAR(32) Primary key
PAYMENT _ID VARCHAR/(250) FK — Payment
ORDER_ID VARCHAR FK — Order
PAYMENT_ATTEMPT_SEQUENCE__ORDER NUMBER Attempt number
PAYMENT _LAST ATTEMPT_INDICATOR BOOLEAN
PAYMENT_ATTEMPT_STATUS VARCHAR

PAYMENT ATTEMPT PROCESSOR NAME VARCHAR Which processor used
PAYMENT ATTEMPT PROCESSOR__CODE VARCHAR
PAYMENT_ATTEMPT_ ERROR_CODE VARCHAR

PAYMENT_ ATTEMPT_ERROR_ CATEGORY VARCHAR

PAYMENT ATTEMPT HARD_ SOFT_ TYPE VARCHAR
PAYMENT_ATTEMPT_ RETRY_INDICATOR VARCHAR
PAYMENT_ATTEMPT_ APPROVED_INDICATOR BOOLEAN

PAYMENT_ ATTEMPT_ACCEPTANCE_RATE_INDICATOR BOOLEAN
PAYMENT_ATTEMPT_AMOUNT_USD FLOAT

PAYMENT ATTEMPT CARD_ BRAND / CARD_BIN / BANK VARCHAR

DENIED_ BY_PSP_OR_FRAUD VARCHAR
DYNAMIC_ROUTING_DETAIL VARIANT JSON routing detail
RULE_ID VARCHAR

MERCHANT_ PAYMENT PROCESSOR_ID VARCHAR

COMMERCE_ROUTING_MERCHANT RULE VERSION ID VARCHAR(36)

VW__ATHENA_PAYMENT_EVENTS (28 cols)

Event stream for each payment attempt — captures state transitions.

Column

Type Notes

PAYMENT_ ATTEMPT 1D
PAYMENT_ATTEMP_EVENT_INDEX

VARCHAR(32) FK — Attempt
NUMBER Event order within attempt

18

Column Type Notes

EVENT_ TYPE VARCHAR

EVENT_STATUS VARCHAR

EVENT_CREATED_AT TIMESTAMP__NTZ
EVENT_ORIGINAL_TOTAL_AMOUNT NUMBER

EVENT_ERROR_ CODE VARCHAR

EVENT ERROR STANDARD ERROR_ CODE VARCHAR Normalized error code
EVENT_ERROR_STANDARD_ERROR_MESSAGE VARCHAR

EVENT_ERROR_DEUNA VARCHAR Deuna-specific error
EVENT_ REFUND_VOID_ REASON VARCHAR

VW_ATHENA__TARGET_USER (40 cols)

User profile and behavioral signals.

Column Type Notes
TARGET_ USER_ID VARCHAR(32) Primary key
COMMERCE_ID VARCHAR
TARGET_USER_BROWSER / OS / DEVICE / EQUIPMENT VARCHAR Device fingerprint
TARGET_ USER_FAVORITE PAYMENT_ METHOD VARCHAR
TARGET_USER_FAVORITE_CARD_BRAND / BANK VARCHAR

TARGET_ USER_ACCESS_COUNTRY_CODE VARCHAR
TARGET_USER_FIRST PURCHASE_DATE TIMESTAMP
TARGET_USER_LAST PURCHASE_DATE TIMESTAMP

TARGET_ USER_USER_FRAUD_RATE NUMBER

TARGET USER_FRAUD_RATE COHORT VARCHAR(30)
TARGET_USER_TENURE_IN_DAYS NUMBER

TARGET_ USER_FREQUENCY_VALUE NUMBER RFM frequency
TARGET USER_RECENCY_VALUE NUMBER RFM recency
TARGET_USER_MONETARY_VALUE FLOAT RFM monetary
TARGET_USER_NUM__ORDERS_VALUE NUMBER

VW_ORDER__AIRLINE_DETAIL__ALL (29 cols)
Airline booking details (Volaris-specific). Joined via ORDER_ID.

Key fields: PNR, BOOKINGISINTERNATIONAL, NAVITAIRE_CARRIER_CODE, TOTAL_FLIGHT NUMBERS, TOTAL_PASSENGER,
ROUND_FLIGHT_IND

VW_ORDER__AIRLINE_INFORMATION_DETAIL_ALL (51 cols)
Flight + passenger details per order. Joined via ORDER_ID.

Key fields: FLIGHT_NUMBER, CARRIER_CODE, ORIGIN_IATA_CODE, DESTINATION_IATA_CODE, PASSENGER_TYPE,
PASSENGER_FREQUENT _FLYER_CODE, SERVICE_CLASS, TOTAL_AMOUNT_USD

19

VW_ROUTING_MERCHANT_RULE (14 cols)

Merchant routing rules configuration.

Column Type

1D NUMBER
MERCHANT _ID VARCHAR
LABEL VARCHAR
STATUS VARCHAR
PRIORITY NUMBER
TRIGGER VARCHAR
IS DEFAULT VARCHAR
IGNORE_NEXT_ RULES VARCHAR
MERCHANT_RULE_PARENT NUMBER

CREATED_AT / UPDATED_AT / DELETED_AT TIMESTAMP

VW_ROUTING_MERCHANT_RULE__CONDITION (16 cols)
Conditions that trigger routing rules.

Key fields: MERCHANT_RULE_ID, MERCHANT_RULE_OPTION_ID, OPERAND, OPERAND_FIELD_TO_EVALUATE, OPERATOR,
METADATA_FIELD_NAME

VW_ROUTING_MERCHANT__RULE__MEMBER (15 cols)
Processors assigned to routing rules.

Key fields: MERCHANT_RULE_ID, PAYMENT_PROCESSOR_ID, MERCHANT_PAYMENT_PROCESSOR_ID, STRATEGY, SORT,
SHADOW_MODE, CAPABILITIES, FRAUD_PROCESSOR

VW_ROUTING_MERCHANT_RULE_ OPTION (8 cols)
Available routing rule option types.

Key fields: ID, LABEL, OPERATORS_AVAILABLE

VW_ROUTING_MERCHANT_RULE_OPTION_ VALUES (8 cols)
Allowed values for routing rule options.

Key fields: ID, MERCHANT RULE_OPTION, VALUE_

VW_SMART_ROUTING_ ATTEMPTS (40 cols)

Event stream from the smart routing engine — per-attempt routing decisions.

Column Type Notes

ATTEMPT_ID NUMBER

20

Column Type Notes

PROPERTIES TRANSACTION_ID VARCHAR Links to payment
PROPERTIES. MERCHANT ID VARCHAR
PROPERTIES_ALGORITHM_TYPE VARCHAR Which routing algorithm
RULE_ID NUMBER Rule applied
PROPERTIES_GATEWAY BOOLEAN

PROPERTIES PAYMENT_PROCESSOR._ID NUMBER
PROPERTIES_PROCESSOR__CODE VARCHAR
PROPERTIES_RESULT_STATUS VARCHAR

PROPERTIES RESULT_ERROR_ CODE VARCHAR

PROPERTIES RESULT_ PROCESS_ TIME FLOAT Latency signal
PROPERTIES_RESULT_SKIPPED REASON VARCHAR Why processor was skipped
PROPERTIES_FRANCHISE / COUNTRY / CITY / STATE VARCHAR

PROPERTIES _ORDER_ VALUE NUMBER

ORIGINAL_TIMESTAMP / RECEIVED_AT TIMESTAMP

Key Relationships

VW_ATHENA_CHANNEL
CHANNEL_ID -+ VW_ATHENA_ORDER

VW_ATHENA_ORDER
ORDER_ID - VW_ATHENA_ORDER_COMPLEMENT
ORDER_ID - VW_ATHENA_PAYMENT
ORDER_ID - VW_ORDER_AIRLINE DETAIL_ALL

ORDER_ID - VW_ORDER_AIRLINE_INFORMATION DETAIL_ALL

TARGET_USER_ID - VW_ATHENA_TARGET_USER

VW_ATHENA_PAYMENT
PAYMENT _ID - VW_ATHENA_PAYMENT ATTEMPT
RULE_ID - VW_ROUTING_MERCHANT RULE

VW_ATHENA_PAYMENT_ATTEMPT
PAYMENT_ATTEMPT_ID - VW_ATHENA_PAYMENT_EVENTS

PROPERTIES_TRANSACTION_ID - VW_SMART_ROUTING_ATTEMPTS

VW_ROUTING_MERCHANT_RULE
ID -+ VW_ROUTING_MERCHANT_RULE_CONDITION
ID -+ VW_ROUTING_MERCHANT_RULE_MEMBER

ABTESTING.ALL_VIEWS_FLAT
Denormalized join of all above views

21

	Smartrouter Scoping Project Plan
	Overview
	Goals & Success Criteria
	Purpose
	Phase 0 Deliverables (Current Focus)
	Success Criteria (Phase 0)
	Longer-Term Success Criteria (Post-Scoping)
	In Scope (Phase 0 — Assessment Only)
	Out of Scope (Phase 0)

	Stakeholders
	Milestones & Timeline
	Key Use Cases (P0)
	Work Breakdown / Task Tracking
	Backlog
	In Progress
	Done

	Schema Understanding & Data Notes
	Overall Assessment
	Key Tables for P0 Use Cases
	Feature Richness for ML Models
	Starting Point Recommendation
	Notable Data Quality Observations

	Technical Gaps (from SOW)
	Testing/Experimentation Platform — Production Ready
	Training Platform — Prototype Only (needs significant work)

	Next Steps
	Immediate Blockers to Resolve
	Phase 0 Assessment Work
	Documentation & Alignment

	Decisions Log
	Open Questions
	Risks & Issues
	Repository Analysis & Code Intelligence
	Repo 1: DATA-Athena-Snowflake — LLM Analytics Platform
	Repo 2: athena-platform — ML Serving & Experimentation Platform
	Impact on Effort Estimates
	Open Questions Raised by Repo Analysis

	Notes & Meeting Log
	2026-02-19
	2026-02-18

	Project Plan Exports
	Documents & SOW Snapshots
	References & Links

	Teams & Stakeholders
	Deuna
	Aidaptive
	Key Contacts by Topic

	Snowflake Schema Reference
	Overview
	Schema: ABTESTING
	ALL_VIEWS_FLAT / ALL_VIEWS_FLAT_SAMPLE

	Schema: SOURCES
	VW_ATHENA_CHANNEL (2 cols)
	VW_ATHENA_ORDER (85 cols)
	VW_ATHENA_ORDER_COMPLEMENT (11 cols)
	VW_ATHENA_PAYMENT (46 cols)
	VW_ATHENA_PAYMENT_ATTEMPT (39 cols)
	VW_ATHENA_PAYMENT_EVENTS (28 cols)
	VW_ATHENA_TARGET_USER (40 cols)
	VW_ORDER_AIRLINE_DETAIL_ALL (29 cols)
	VW_ORDER_AIRLINE_INFORMATION_DETAIL_ALL (51 cols)
	VW_ROUTING_MERCHANT_RULE (14 cols)
	VW_ROUTING_MERCHANT_RULE_CONDITION (16 cols)
	VW_ROUTING_MERCHANT_RULE_MEMBER (15 cols)
	VW_ROUTING_MERCHANT_RULE_OPTION (8 cols)
	VW_ROUTING_MERCHANT_RULE_OPTION_VALUES (8 cols)
	VW_SMART_ROUTING_ATTEMPTS (40 cols)

	Key Relationships

