
Smartrouter Scoping Project — Full Report

2026-02-19

Smartrouter Scoping Project Plan
Last Updated: 2026-02-19 Status: In Progress

Overview

Field Details

Project Name Smartrouter Scoping Project
Start Date 2026-02-18
Target Completion TBD
Owner TBD
Status Planning

Goals & Success Criteria
Purpose

This is a scoping and assessment project. The goal of this phase is to nail down everything that needs to be
done and produce a clear, detailed estimate of the effort required to integrate Athia AI/ML into Deuna’s payments
service. No implementation is happening yet.

Phase 0 Deliverables (Current Focus)

• Full understanding of Deuna’s data, schema, and existing routing infrastructure
• Detailed breakdown of all work required across P-01 through P-05 use cases
• Effort estimates per workstream (engineering, data, infra, ML)
• Risk identification and open questions resolved
• Clear recommendation on what to build and in what order

Success Criteria (Phase 0)

• All open questions answered
• Effort estimate produced with confidence
• All access and dependencies identified and documented
• Stakeholder alignment on scope, timeline, and approach

Longer-Term Success Criteria (Post-Scoping)

• Measurable approval lift
• Stability during PSP outages
• Latency target: p95 < 200ms

1

In Scope (Phase 0 — Assessment Only)

• Understand Deuna’s data, schema, and existing routing rules
• Assess Athia platform gaps vs. what’s needed
• Size effort for: Processor/Message selector, Smart Retry logic, Feedback Loop
• Identify all dependencies, blockers, and risks

Out of Scope (Phase 0)

• Any implementation or code delivery
• 3DS optimization (Phase 2)
• User-facing messaging (Phase 3)
• Installment optimization

Stakeholders
See TEAMS.md for the full source of truth on all people and roles.

Name Company Role

Pablo Deuna CTO
Israel Deuna Data POC
Farhan Deuna Claude/LLM Access POC
Mark Walick Deuna PM Lead
Rakesh Aidaptive Engineer
Naoki Aidaptive Engineer

Milestones & Timeline

Milestone Duration Status Notes

Phase 0: Assess level of
effort/complexity

2 days In Progress $6K budget, started
2026-02-18

Phase 1: Model running in
production for 2 processors
with basic feature store

2 weeks Pending Core delivery

Phase 2: Add monitoring +
integrate with
experimentation

Week 3 Pending Immediately after Phase 1

Phase 3: Drift detection,
CI/CD, experiment ramp-up,
additional model techniques

TBD Pending

Key Use Cases (P0)

ID Use Case Description

P-01 Outage detection & failover Fail over/back via persistent timeout
codes; random sampling of down PSP
to detect recovery

2

./TEAMS.md

ID Use Case Description

P-02 Overall transaction routing optimizer Optimize Deuna’s existing static rules
based on historical outcomes

P-03 Per-transaction optimal route selection Rank top 3 routes based on prior
outcomes for fast retry

P-04 Message manipulation Toggle CIT/MIT, AVS, MCC variables
in authorization requests; top 3
recommendations

P-05 Retry optimization Subs/MIT focused; enterprise darktime
reduction; delayed retry based on
reputation

Work Breakdown / Task Tracking
Backlog

⊠ Claude access and LLM budget provisioned (2026-02-19)
⊠ Confirm Snowflake read access provisioned — Rakesh verified (2026-02-18, info from Israel)
⊠ Naoki Snowflake access confirmed (2026-02-19)
□ Provision Deuna corp accounts for Rakesh and Naoki

□ Snowflake instance access for both accounts
⊠ Code (repo) access for Rakesh — granted by Pablo (2026-02-19)
□ Code (repo) access for Naoki
– [~] Claude Code credits for both accounts — Not needed

□ Complete Phase 0: assess level of effort/complexity (2 days, $6K)
□ Build training platform (currently prototype-only — see Technical Gaps)
□ Deliver P-01 through P-05 use cases

In Progress

• (nothing yet)

Done

• (nothing yet)

Schema Understanding & Data Notes
Extracted 2026-02-18 from PAYMENT_ML Snowflake database. Full schema reference: SCHEMA.md

Overall Assessment

The schema is very well structured for the P0 use cases. The data is organized into clean source views in the SOURCES
schema, and a massive denormalized flat table (ABTESTING.ALL_VIEWS_FLAT) that joins everything together — ideal
for quick EDA and feature engineering without complex joins.

Key Tables for P0 Use Cases

VW_ATHENA_PAYMENT_ATTEMPT — most important table for routing & retry - Tracks every individual attempt with
sequence order, processor used, error code/category, hard/soft decline type, retry indicator, and approved status -
DYNAMIC_ROUTING_DETAIL (VARIANT/JSON) column likely contains rich routing decision metadata — needs explo-
ration - PAYMENT_ATTEMPT_SEQUENCE_ORDER + PAYMENT_LAST_ATTEMPT_INDICATOR make it easy to reconstruct the
full retry chain per payment - Directly supports P-03 (per-transaction route selection) and P-05 (retry optimization)

3

./SCHEMA.md

VW_SMART_ROUTING_ATTEMPTS — current routing engine event log - Captures per-attempt routing decisions: algo-
rithm type, processor selected, process time, result status, skip reason - PROPERTIES_RESULT_PROCESS_TIME is a
direct latency signal for the p95 < 200ms target - PROPERTIES_RESULT_SKIPPED_REASON tells us why processors
were bypassed — key for P-01 (outage detection) - PROPERTIES_ALGORITHM_TYPE reveals what routing strategies
are already in use

VW_ROUTING_MERCHANT_RULE + related views — existing rules engine - Deuna already has a rules-based routing
system with conditions, members, options, and priority ordering - This is the foundation for P-02 (optimize existing
static rules) — we don’t start from scratch - SHADOW_MODE in VW_ROUTING_MERCHANT_RULE_MEMBER suggests there’s
already infrastructure for testing new processors without live traffic

Feature Richness for ML Models

The data has strong signal across multiple dimensions:

Feature Group Key Columns Usefulness

Retry history NUM_ATTEMPTS_ORDER,
PREVIOUS_ORDER_ERROR_CODE,
PREVIOUS_ORDER_PROCESSOR,
AVG_SEC_BETWEEN_PAYMENT_ATTEMPS

Direct retry optimization signals

Error signals ERROR_CODE, ERROR_CATEGORY,
HARD_SOFT,
EVENT_ERROR_STANDARD_ERROR_CODE

Distinguish hard vs soft declines;
normalized error codes in events

Card signals CARD_BIN, CARD_BRAND, BANK,
CARD_COUNTRY

Processor affinity by card type

User behavior TARGET_USER_FRAUD_RATE_COHORT,
TARGET_USER_TENURE_IN_DAYS,
TARGET_USER_FREQUENCY_VALUE,
TOTA_MINUTES_BROWSING,
TOTAL_NUM_SESSIONS

User risk and engagement signals

RFM TARGET_USER_FREQUENCY_VALUE,
TARGET_USER_RECENCY_VALUE,
TARGET_USER_MONETARY_VALUE

Customer value for routing priority

Geo LATITUDE, LONGITUDE,
ORDER_COUNTRY_CODE, WEATHER_MAIN

Geography-based processor routing

Device TARGET_USER_BROWSER, TARGET_USER_OS,
TARGET_USER_DEVICE

Device fingerprinting

Message config MCI_MSI_TYPE, ORDER_MCI_MSI_TYPE,
PAYMENT_ATTEMPT_METHOD_TYPE

CIT/MIT toggle tracking for P-04

3DS CHALLENGE_3DS_INDICATOR,
CHALLENGE_3DS_STATUS

Available now; scoped to Phase 2

Starting Point Recommendation

• Use ABTESTING.ALL_VIEWS_FLAT for initial EDA — everything is already joined
• Switch to individual SOURCES views for model training to avoid data leakage and redundancy
• Explore DYNAMIC_ROUTING_DETAIL VARIANT column in VW_ATHENA_PAYMENT_ATTEMPT early — may contain

routing features not exposed elsewhere

4

Notable Data Quality Observations

• Typo in source data: PATMENT_TIME in VW_ATHENA_PAYMENT (should be PAYMENT_TIME) — minor but worth
noting for pipelines

• Airline-specific data: VW_ORDER_AIRLINE_DETAIL_ALL and VW_ORDER_AIRLINE_INFORMATION_DETAIL_ALL
suggest Volaris is a key merchant with rich flight/passenger metadata

• SOURCES schema has no raw tables — only views, meaning underlying raw tables are managed upstream by
Deuna’s data team (Israel’s domain)

Technical Gaps (from SOW)
Testing/Experimentation Platform — Production Ready

• A/B testing infrastructure, multi-variant experiments, automated winner selection
• Model registry with versioning, real-time inference (FastAPI sidecar)
• Missing: canary deployments

Training Platform — Prototype Only (needs significant work)
Current State

Component Status Notes

Basic training scripts Prototype 3 models — NOT production-ready
Snowflake data access Partial Manual queries only
Logistic Regression model Prototype No real ML pipeline

Gap Tracking

Gap Category Priority Status Notes

G-01 Automated
retraining

Automation High Not started 100% manual
execution today

G-02 Orchestration Infrastructure High Not started No scheduling,
retries, or workflow
management

G-03 CI/CD pipeline DevOps High Not started No testing, no
deployment
automation

G-04 Data validation Data Quality High Not started No quality checks
on inputs

G-05 Model monitoring Observability High Not started Can’t detect model
degradation

G-06 Deployment
automation

Automation High Not started Manual file
uploads to EFS
today

G-07 Model registration
automation

Automation Medium Not started Manual API calls
today

G-08 Feature store ML Infrastructure High Not started Features
recomputed each
time — no caching

G-09 Drift detection Observability Medium Not started No alerts when
data/model drifts

5

Gap Category Priority Status Notes

G-10 Lineage tracking Governance Medium Not started Can’t trace which
data produced
which model

G-11 Hyperparameter
tuning

ML Quality Medium Not started Fixed parameters
only

G-12 Algorithm
comparison

ML Quality Medium Not started Single algorithm
(Logistic
Regression) only

G-13 Versioning
workflow

Governance High Not started Manual version
management

G-14 Rollback capability Reliability High Not started Can’t revert bad
models

Summary by Category

Category Gaps Notes

Automation G-01, G-03, G-06, G-07 Core pipeline work — needed before any production use
Infrastructure G-02, G-08 Orchestration + feature store are foundational
Observability G-05, G-09 Monitoring + drift detection — needed post-deploy
Governance G-10, G-13 Lineage + versioning — important for auditability
Reliability G-14 Rollback — critical for safe production deployment
ML Quality G-11, G-12 Nice to have in Phase 1; important for long-term quality
Data Quality G-04 Validate inputs before training

Effort Assessment

To be filled in during Phase 0 assessment.

Gap Estimated Effort Dependencies Owner

G-01 Automated retraining TBD G-02, G-08 TBD
G-02 Orchestration TBD TBD
G-03 CI/CD TBD TBD
G-04 Data validation TBD G-08 TBD
G-05 Model monitoring TBD G-06 TBD
G-06 Deployment automation TBD G-03 TBD
G-07 Model registration automation TBD G-06 TBD
G-08 Feature store TBD TBD
G-09 Drift detection TBD G-05 TBD
G-10 Lineage tracking TBD G-07, G-13 TBD
G-11 Hyperparameter tuning TBD G-01 TBD
G-12 Algorithm comparison TBD G-01 TBD
G-13 Versioning workflow TBD G-06 TBD
G-14 Rollback capability TBD G-13 TBD

Recommended Build Order

1. Foundation: G-02 Orchestration → G-08 Feature store → G-04 Data validation

6

2. Automation: G-03 CI/CD → G-06 Deployment automation → G-07 Model registration → G-01 Automated
retraining

3. Governance: G-13 Versioning → G-10 Lineage → G-14 Rollback
4. Observability: G-05 Monitoring → G-09 Drift detection
5. ML Quality: G-11 Hyperparameter tuning → G-12 Algorithm comparison

Next Steps
Immediate Blockers to Resolve

⊠ Claude/LLM access & budget — provisioned (2026-02-19)
□ Provision Deuna corp accounts for Rakesh & Naoki (Snowflake, code/repo, Claude Code credits)
⊠ Naoki Snowflake access confirmed (2026-02-19)

Phase 0 Assessment Work

□ Explore DYNAMIC_ROUTING_DETAIL JSON column in VW_ATHENA_PAYMENT_ATTEMPT — likely contains rich rout-
ing metadata not exposed elsewhere

□ Run EDA on ABTESTING.ALL_VIEWS_FLAT — understand data volumes, date ranges, merchant mix, approval
rates, processor distribution

□ Map existing routing rules — query VW_ROUTING_MERCHANT_RULE and related views to understand current rule
engine

□ Assess Athia training platform gaps — produce concrete list of what needs to be built vs. what already exists
□ Size effort per use case (P-01 through P-05) — engineering, data, infra, and ML effort per workstream
□ Identify risks and open questions — populate the Risks and Open Questions sections below

Documentation & Alignment

□ Fill in Open Questions section — capture anything still unclear from the Deuna side
□ Produce final Phase 0 deliverable — effort estimate doc with work breakdown, risks, and recommended build

order for stakeholder sign-off

Decisions Log

Date Decision Rationale Made By

2026-02-18 Latency target updated from
p95 < 50ms to p95 < 200ms

Revised from original SOW
spec

Rakesh (discussed with
Pablo)

2026-02-19 Target merchant for Phase 1
set to Volaris (not
Cinépolis)

Volaris has known PSPs
(Worldpay ID:76, MIT ID:85,
Elavon, Amex); Cinépolis
only shows Cybersource
gateway with unknown
processor behind it

Mark Walick

Open Questions

Question Owner Status

1 Claude/LLM access &
budget — when will this be
provisioned?

Pablo → Farhan Done (2026-02-19)

7

Question Owner Status

2 Are ATHIA_PREDICTIONS
/ ATHIA_FEEDBACK
tables populated in Deuna’s
Snowflake today?

Israel / Rakesh Open

3 Are SageMaker endpoints
currently live for
processor_selector /
retry_predictor?

Rakesh Open

4 Is there a live model in
MODEL_ARTIFACTS that
Deuna’s payment service is
calling today?

Rakesh Open

5 What is the current payment
volume through the routing
engine? (Validates A/B test
sample size feasibility)

Israel Open

6 Who owns athena-platform
Go repo deployments —
Aidaptive or Deuna infra?

Pablo / Rakesh Open

Risks & Issues

ID Description Likelihood Impact Mitigation Status

R1 TBD Low/Med/High Low/Med/High TBD Open

Repository Analysis & Code Intelligence
Analyzed: 2026-02-19 — Both Deuna repos cloned and analyzed in full. Repos: DATA-Athena-
Snowflake | athena-platform

Repo 1: DATA-Athena-Snowflake — LLM Analytics Platform

What it is: A Python-based (FastAPI + LangGraph/LangChain) multi-agent AI platform. This is Athia’s data
intelligence layer — it uses LLMs (GPT-4o, Claude 3.7 Sonnet via Bedrock) to analyze Snowflake data, detect
anomalies, and generate payment optimization strategies.

This is NOT a training platform. It produces LLM-generated strategies and insights — not trained ML models.

Architecture

• Framework: FastAPI + LangGraph (stimulus-response multi-agent pattern)
• LLM Backend: OpenAI GPT-4o (default), AWS Bedrock (Amazon Nova, Claude 3.7 Sonnet)
• Data Layer: Snowflake Snowpark with async session pooling, Jinja2-templated SQL queries
• Deployment: AWS Lambda + ECS + Bedrock AgentCore + SQS, CI/CD via GitHub Actions
• Metrics Layer: Centralized YAML-defined metrics with Jinja2 SQL templates (acceptance_rate, fraud_rate,

3ds_approval_rate, effective_cost_rate, chargeback_rate)

Implemented Workflows (11 stimuli)

8

https://github.com/DUNA-E-Commmerce/DATA-Athena-Snowflake
https://github.com/DUNA-E-Commmerce/DATA-Athena-Snowflake
https://github.com/DUNA-E-Commmerce/athena-platform

Stimulus Purpose Status

acceptance_rate_analysis_requested Detect acceptance rate drops, processor
issues, BIN anomalies

Implemented (v0_1, v1_0)

fraud_card_analysis_requested Fraud detection: card testing, false
positives, geographic patterns

Implemented (v0_1)

cost_optimization_analysis_requestedPayment processing cost analysis Early stage
strategy_generation_initiated Orchestrate analysts and rank strategic

recommendations
Partially implemented

metrics_anomaly_research_triggered Automated anomaly detection and
trend analysis

Implemented

user_question_submitted Conversational chatbot for data queries Implemented
data_analyst_requested SQL generation and data visualization Implemented
researcher_assistance_requested Comprehensive research with parallel

deep-dive explorers
Implemented

deep_exploration_needed Root cause analysis for metric anomalies Implemented
element_edition_requested SQL query modification Implemented
knowledge_expert_asked External knowledge base via MCP Implemented

Relevance to P0 Use Cases

• P-02 (Routing optimizer): acceptance_rate_analysis_requested workflow already analyzes processor
performance and generates routing recommendations. This is a direct input to routing optimization.

• P-05 (Retry optimization): No retry-specific workflow exists yet. The acceptance_rate_attempt metric
tracks retry attempts, but there is no dedicated retry analysis or routing workflow. This is a gap we need
to fill.

• P-01 (Outage detection): No outage/failover workflow — this lives in the serving platform (athena-
platform), not here.

Gaps Found in This Repo

• Strategy Director incomplete: The Matcher node has an exit() placeholder; Ranker uses dummy prompts.
• No retry workflow: No dedicated stimulus for retry optimization or retry routing.
• No traditional ML: Entirely LLM-based — no scikit-learn, XGBoost, neural nets. All pattern detection uses

hardcoded thresholds (e.g., 15% drop threshold for acceptance rate).
• No adaptive thresholds: Fraud detection windows (60–80 min) and drop thresholds are hardcoded.
• Limited error recovery: No circuit breaker pattern; cascading failures bring down the whole workflow.

Repo 2: athena-platform — ML Serving & Experimentation Platform

What it is: A production Go (Gin) REST API that serves ML predictions, manages model experiments (A/B
testing), and handles the full model lifecycle. This is the component that Deuna’s payment service calls to get
routing decisions in real time.

Architecture

• Language/Framework: Go + Gin (Clean Architecture)
• Databases: PostgreSQL (RDS Multi-AZ) + Redis (ElastiCache) for caching
• ML Backends: AWS SageMaker, Snowflake Cortex, custom HTTP endpoints
• Snowflake Integration: JWT-based private key auth; queries ATHIA_PREDICTIONS, ATHIA_FEEDBACK,

ATHIA_TRAINING_DATASET, ATHIA_EXPERIMENT_LIFT
• Deployment: ECS Fargate + ALB (mTLS enforced for /api/v1/ml/predict/*) + EFS for model storage

9

ML Model Registry (Already Implemented)

Inference Type Description Maps to Use Case

processor_selector Ranks available processors by approval
probability

P-03: Per-transaction route selection

retry_predictor Predicts retry success probability P-05: Retry optimization
retry_sequence Predicts optimal retry processor order P-05: Retry optimization
installment_optimizer Predicts best installment options Out of scope Phase 1

Key finding: The model registry schema (MODEL_ARTIFACTS, MODEL_EXPERIMENTS, MODEL_EXPERIMENT_VARIANTS)
and inference API are already built. What’s missing is the training pipeline that produces models to register
here.

A/B Experimentation System (Production-Ready)

• Bucketing: SHA256(transaction_id) % 10000 — deterministic and reproducible
• Traffic splits: Basis points (bps) — e.g., 30% control / 70% treatment
• Auto-winner evaluation: Statistical significance testing with full guardrails:

– Minimum 7 days runtime
– Minimum 1000 samples per variant
– p-value < 0.05 (95% confidence)
– Minimum 1% absolute lift
– Latency regression guard: � 10%
– Revenue regression guard: � -5%

• Dry run mode: Safe default for testing evaluation logic before enabling real rollouts
• Merchant-specific experiments: Experiments can be scoped to specific merchant IDs

Snowflake Tables for Training & Monitoring

Table Purpose Status

ATHIA_PREDICTIONS Model inputs + outputs per prediction Active
ATHIA_FEEDBACK Transaction outcomes

(approved/declined)
Active

ATHIA_TRAINING_DATASET Predictions + feedback joined for
retraining

Active

ATHIA_EXPERIMENT_LIFT Aggregated experiment metrics for
auto-winner

Active

ATHIA_STAGE_OUTCOMES Per-stage funnel outcomes (installment
→ processor → retry)

Designed, not deployed

ATHIA_SESSION_SUMMARY Full session-level aggregations Designed, not deployed

Gaps Found in This Repo

• Analytics tables not deployed: ATHIA_STAGE_OUTCOMES and ATHIA_SESSION_SUMMARY tables exist in design
docs but are not created in Snowflake. Multi-stage funnel analysis is blocked.

• No production monitoring dashboards: Grafana setup exists locally (docker-compose) but no alert rules
or production dashboards are configured.

• No training pipeline: Model artifacts (SageMaker ARNs, Cortex endpoints) must currently be registered
manually via API. No automated training → registration workflow.

• Cache invalidation is manual: Experiment assignment cache (Redis, 24h TTL) has no auto-invalidation on
config changes.

• LLM integration partial: Bedrock client and prompt templates exist, but full agent orchestration is not
complete.

10

• No rate limiting: No global rate limiting middleware — only per-user, per-feature quotas.

Impact on Effort Estimates

This analysis materially changes our understanding of the effort required. Here is what we learned:

What’s Already Built (Reduces Effort)

Area What Exists Gap Gaps Affected

Model serving API Full Go REST API with
processor_selector + retry_predictor
endpoints

Reduces P-03, P-05 integration work

Model registry ModelArtifact + Experiment +
ExperimentVariant tables + CRUD API

Reduces G-07 effort

A/B experimentation Full auto-winner system with statistical
guardrails

Reduces P-02 work

Snowflake feedback loop ATHIA_PREDICTIONS +
ATHIA_FEEDBACK +
ATHIA_TRAINING_DATASET tables

Reduces G-05, G-08 baseline work

LLM analytics Acceptance rate + fraud workflows for
insights

Can accelerate P-02 analysis

CI/CD skeleton GitHub Actions workflows for both
repos

Reduces G-03 baseline work

What Still Needs to Be Built

Area Specific Work Gaps

Training pipeline Automated end-to-end training →
model registration

G-01, G-06, G-07

Feature store Consistent feature computation +
serving (Redis-backed)

G-08

Orchestration Scheduled + trigger-based training runs G-02
Analytics tables Deploy ATHIA_STAGE_OUTCOMES

+ ATHIA_SESSION_SUMMARY in
Snowflake

G-05

Production monitoring Grafana dashboards + alerting rules for
model performance

G-05, G-09

Retry workflow (LLM) New stimulus
retry_optimization_requested in
DATA-Athena-Snowflake

P-05

Strategy Director Finish matcher + ranker nodes in
DATA-Athena-Snowflake

P-02

Data validation Add schema + statistical validation to
training pipeline

G-04

Versioning Automated version bumping +
metadata tagging on training runs

G-13

Lineage tracking Record data → feature → model →
deployment lineage

G-10

Rollback capability One-command rollback to previous
registered model

G-14

Drift detection Feature + prediction distribution
monitoring

G-09

11

Area Specific Work Gaps

Hyperparameter tuning Integrate Optuna/Ray Tune into
training pipeline

G-11

Algorithm comparison Add XGBoost/LightGBM/NN
alternatives to Logistic Regression

G-12

Testing Coverage & Architecture Deep-Dive
Analyzed: 2026-02-19 — Both repos examined in full for testing maturity and architectural patterns.

DATA-Athena-Snowflake — Testing Coverage

Metric Detail

Test files 28
Test functions 421
Test frameworks pytest 8.4, pytest-asyncio, pytest-mock
CI Separate workflows for metrics + deployment only — no unified suite
Estimated coverage ~18%

Well tested: - Metrics layer: 70–80% (5 test files, strong validation tests) - Deployment config/validation: 50–60%
- Deep-dive explorer utilities (pareto filter, metric router, data comparator)

Critical gaps (untested): - All 14 route handlers — 0% - All 13 services — 0% - All 3 clients (Redis, Postgres,
Platform) — 0% - Core multi-agent framework (AgentWorkflow, AgentStrategy, ToolStrategy) — 1 manual test,
not in pytest - All 11 workflow branches across versions — no unit tests - All 4 Lambda / AgentCore entrypoints —
0% - Middleware stack — 0%

Maturity: 2/5 — Immature. Only peripheral layers tested; the core product (multi-agent workflows) is essentially
a black box.

DATA-Athena-Snowflake — Architecture

Pattern: Stimulus-Response multi-agent orchestration via LangGraph

Request → StimulusRegistry → OrchestratorWorkflow → Branch (DAG of Nodes)
→ AgentWorkflow (LangGraph StateGraph) → Response

11 registered stimuli (workflows), each with versioned implementations (e.g. user_question_submitted at
v4.3/4.4/4.5). Each branch is a BaseBranch subclass composing AgentStrategy (LLM nodes) and ToolStrategy
(deterministic tools) into a LangGraph DAG.

Key components: - OrchestratorWorkflow — dynamically builds workflow from YAML config + registry -
StimulusRegistry — central map of stimulus → class, version, alias - AgentWorkflow — LangGraph StateGraph
wrapper with MemorySaver checkpointing - MessagesState — carries full conversation history between nodes -
FastAPI middleware stack: Auth → ValidateUsage → LogRequest → ApplyUsage → SessionLifecycle - LLM back-
ends: OpenAI GPT-4o (default), AWS Bedrock (Claude 3.7 Sonnet, Amazon Nova Micro), Snowflake LLM

Notable architectural gaps: - Strategy Director matcher + ranker nodes have placeholder code — not functional
(exit() in matcher, dummy prompts in ranker) - No retry-specific workflow — retry_optimization_requested
stimulus is entirely missing (P-05 gap) - No traditional ML — all inference is LLM-based with hardcoded thresholds

12

(e.g. 15% acceptance drop) - No circuit breaker — a cascading failure brings down the entire workflow - OpenTelemetry
integration is commented out — no observability in production

athena-platform — Testing Coverage

Metric Detail

Test files (_test.go) 126
Test functions 777
Test frameworks Go testing + testify (assert/require/mock), in-memory SQLite for repos
CI GitHub Actions on every PR — make test/coverage
Coverage threshold 20% (comment in code: “TODO: raise to 65”)
internal/clients/ Excluded from coverage entirely

Well tested: - All 44 domain service interfaces have test files - ~43 PostgreSQL repository implementations tested
via in-memory SQLite - V1 REST handlers: 15/18 (83%) - Auth middleware (JWT + API key) tested - Snowflake,
Hermes, Merchant clients tested

Critical gaps (untested): - V2 API: 0/18 handlers — entire new API version has zero test coverage - Bedrock
client: 0% — ML inference client excluded from coverage, no tests - 4 domain services untested: auth, bedrock,
element, workspace - Bootstrap/DI integration test skipped (TODO: testcontainers) - 3 V1 handlers untested:
agent, workspaces, elements - 0 benchmark tests — no performance regression safety net

Maturity: 3.5/5 — Solid foundation, with a critical blind spot in v2 + ML inference path.

athena-platform — Architecture

Pattern: Clean Architecture — strict layering

REST Handlers (v1 / v2, Gin)
↓

Controllers (~30 implementations)
↓

Domain Services (44 domain packages)
↓

Repositories (43 GORM implementations)
↓

PostgreSQL (RDS Multi-AZ) + Redis (ElastiCache)

Key design choices: - Constructor injection throughout — all services receive interface dependencies - 43 repository
implementations, each domain entity has its own repo with query builders - Interface-driven — testify mocks and
custom fake Redis for unit isolation - Event outbox table (athia_event_outbox) for reliable event delivery - Custom
error types with HTTP status code mapping

Experiment / A-B testing system: - 4 model types: processor_selector, retry_predictor, retry_sequence,
installment_optimizer - Experiment assignment: SHA256(transaction_id) % 10000 — deterministic bucketing
- Redis-cached assignments with 24h TTL - Auto-winner worker (cmd/worker/) evaluates statistical significance
→ force-routes all traffic to winner - Rich stratification context: device, geo, card BIN, merchant tier, timing
(hour/day/payday windows), customer LTV

Feedback loop: - Merchants POST feedback on predictions → PostgreSQL → feeds retraining signals via
SendFeedback() / SendBatchFeedback()

Notable architectural gaps: - V2 API exists but fully untested — suggests incomplete refactoring - Bedrock
client (ML path) untested and excluded from coverage config - No event-driven cache invalidation — stale exper-
iment assignments possible for up to 24h after config changes - Tight coupling to *gin.Context — hard to test

13

handlers without HTTP server - Experiment context passed as ad-hoc parameters — no middleware to propagate it
automatically

Testing Summary — Both Repos

DATA-Athena-Snowflake athena-platform

Language Python / FastAPI / LangGraph Go / Gin
Test count 421 functions, 28 files 777 functions, 126 files
Estimated coverage ~18% ~25–30%
Core product tested? No — multi-agent workflows untested Partially — v2 API + Bedrock missing
Architecture pattern Stimulus-response / LangGraph DAG Clean Architecture / Repository
Biggest risk Multi-agent core is a black box V2 API + ML inference path untested
CI enforced? Partial — fragmented workflows Yes — every PR

Recommended immediate actions (both repos): 1. Add unit tests for core multi-agent framework nodes/edges
(DATA-Athena-Snowflake) 2. Add tests for all 18 v2 handlers (athena-platform) 3. Add tests for Bedrock client +
service (athena-platform) 4. Remove internal/clients/ from coverage exclusions (athena-platform) 5. Raise cov-
erage threshold from 20% → 60% with CI enforcement (athena-platform) 6. Build retry_optimization_requested
stimulus — currently missing entirely (DATA-Athena-Snowflake)

Open Questions Raised by Repo Analysis

Question Owner Status

Q-R1 Are ATHIA_PREDICTIONS
and ATHIA_FEEDBACK
tables already populated in
Deuna’s Snowflake, or only in
Athia’s internal Snowflake?

Israel / Rakesh Open

Q-R2 Are SageMaker endpoints
currently live for
processor_selector /
retry_predictor, or are they
placeholders?

Rakesh Open

Q-R3 Is there a working model in
MODEL_ARTIFACTS that
Deuna’s payment service is
actually calling today?

Rakesh Open

Q-R4 What is the current payment
volume through the routing
engine? (Needed to validate
sample size requirements for
A/B tests)

Israel Open

Q-R5 Who owns the
athena-platform Go repo
deployment? Aidaptive or
Deuna infra?

Pablo / Rakesh Open

14

Notes & Meeting Log
2026-02-19 (late)

• Portal live at https://deuna-ebce2.web.app — Google Auth gate deployed. Only @aidaptive.com and
@deuna.com email addresses can sign in. Built on Firebase Hosting + Firebase Auth JS SDK (signInWith-
Popup).

• Favicon added (D×A SVG, hosted at /favicon.svg).
• Scoping project GitHub repo link removed from portal References section (internal repo — not for client view).
• Note: signInWithRedirect was tried as an alternative to fix a COOP console warning, but it broke the sign-in

flow and was reverted back to signInWithPopup. COOP warning is cosmetic and does not affect functionality.
• v12 PDF export generated and deployed to hosting portal.

2026-02-19 (afternoon)

• Merchant selection: Volaris chosen as the target merchant for Phase 1 (over Cinépolis).
– Cinépolis shows only Cybersource (a gateway — actual processor behind it is unknown), making it harder

to work with.
– Volaris has a clear, known set of PSPs:

∗ Worldpay (Processor ID: 76)
∗ MIT (Processor ID: 85)
∗ Elavon — used for cards
∗ Amex — used specifically for Amex cards

– Volaris uses 4 processors total for cards.
– Routing policies exist for different currencies: MIT, Elavon, Worldpay handle different currency flows;

Amex is dedicated to Amex card transactions.
– This clarity makes Volaris the right starting point for P-03 (per-transaction route selection) and P-05

(retry optimization).

2026-02-19

• Analyzed both Deuna GitHub repositories in full: DATA-Athena-Snowflake and athena-platform.

• Key finding: athena-platform is a production-ready Go REST API with model registry, A/B testing, and
auto-winner selection already built. The missing piece is the training pipeline.

• Key finding: DATA-Athena-Snowflake is an LLM-based analytics platform (not ML training). It generates
strategies via GPT-4o / Claude, not trained models.

• The inference types processor_selector and retry_predictor already exist in the model registry schema —
these map directly to P-03 and P-05.

• No retry-specific workflow exists in DATA-Athena-Snowflake — this needs to be built.

• Several analytics Snowflake tables (ATHIA_STAGE_OUTCOMES, ATHIA_SESSION_SUMMARY) are designed but not
deployed. This affects multi-stage monitoring.

• Open questions added: live model status, ATHIA_ table status in Deuna Snowflake, payment volume for A/B
test sizing.

• Pablo granted Rakesh code repository access (2026-02-19 morning).

Follow-up items to iterate on: - [] Are ATHIA_PREDICTIONS / ATHIA_FEEDBACK tables populated in Deuna’s
Snowflake today, or only in Athia’s internal environment? (Ask Israel) - [] Are there live SageMaker endpoints
behind processor_selector / retry_predictor today, or are they placeholders? (Rakesh to confirm) - [] What
is the current payment volume through the routing engine? Minimum 1,000 transactions per variant needed for
A/B test statistical validity. (Ask Israel) - [] Who owns athena-platform Go repo deployment — Aidaptive or
Deuna infra? This affects Phase 1 deployment planning. (Clarify with Pablo) - [] Deploy ATHIA_STAGE_OUTCOMES
and ATHIA_SESSION_SUMMARY tables in Snowflake — needed for multi-stage funnel monitoring (G-05). - [] Build
retry_optimization_requested stimulus in DATA-Athena-Snowflake — no retry-specific LLM workflow exists
today (P-05 gap). - [] Finish Strategy Director matcher + ranker nodes in DATA-Athena-Snowflake — currently has
placeholder code (P-02 gap). - [] Confirm whether auto-winner worker is deployed in production with DRY_RUN=false,
or still in dry-run mode.

15

2026-02-18

• Project plan file created. Details to be filled in.
• Israel is the main POC for data and related topics.
• Pablo is the CTO.
• All data is in Snowflake database; we will get read access to all tables. Snowflake URL: VLTAXPW-RMONTES.snowflakecomputing.com
• Need Claude access and budget for LLM. Farhan is the main POC; Pablo will be talking to Farhan to get this

access.
• Mark Walick is the PM lead for this project.

Project Plan Exports

Date File Notes

2026-02-18 project-plan-2026-02-18.pdf Initial export
2026-02-18 project-plan-2026-02-18-v2.pdf Updated with schema notes,

stakeholders, todos
2026-02-18 project-plan-2026-02-18-v3.pdf Updated with TEAMS.md reference,

Mark Walick correction
2026-02-18 project-plan-2026-02-18-v4.pdf Self-contained: includes project plan +

teams + schema
2026-02-18 project-plan-2026-02-18-v5.pdf Updated project purpose to reflect

scoping nature
2026-02-18 project-plan-2026-02-18-v6.pdf Improved table formatting — fixed

column overlaps
2026-02-18 project-plan-2026-02-18-v7.pdf Latest snapshot
2026-02-18 project-plan-2026-02-18-v8.pdf Refocused Phase 0 as assessment-only

with clear deliverables
2026-02-18 project-plan-2026-02-18-v9.pdf Added Next Steps section
2026-02-18 schema-2026-02-18.pdf Initial Snowflake schema snapshot
2026-02-19 project-plan-2026-02-19-v12.pdf Latest export
2026-02-19 project-plan-2026-02-19-v11.pdf Access status updates, Volaris decision,

follow-up items
2026-02-19 project-plan-2026-02-19-v10.pdf Added full repo analysis:

DATA-Athena-Snowflake +
athena-platform findings, updated open
questions

Documents & SOW Snapshots

Document Date Version File

SOW: Athia Embedded into
Acceptance - Phase 1

2026-02-16 v1 PDF

References & Links
• CLAUDE.md (project conventions)
• Deuna Code Repository (GitHub Org)

16

https://github.com/DUNA-E-Commmerce

• Snowflake Data Repository
• Platform Repository
• Data Dictionary
• Athia Data Model
• Snowflake Login (VLTAXPW-RMONTES.snowflakecomputing.com)

Teams & Stakeholders
Source of truth for all people involved in the Smartrouter Scoping Project. Last Updated: 2026-02-18

Deuna

Name Role Responsibilities

Pablo CTO Executive sponsor; coordinating Claude/LLM access via Farhan
Israel Data POC Main point of contact for data and Snowflake access
Farhan Claude/LLM Access POC Provisioning Claude access and budget
Mark Walick PM Lead Product management lead

Aidaptive

Name Role Responsibilities

Rakesh Engineer Engineering lead; Snowflake access verified
Naoki Engineer Engineering; Snowflake access pending test

Key Contacts by Topic

Topic Owner Notes

Data / Snowflake Israel (Deuna) All data questions, schema, access
Claude / LLM Budget Farhan (Deuna) Pablo coordinating with Farhan
Project Management Mark Walick (Deuna)
Engineering Rakesh + Naoki (Aidaptive) Coordinate with each other on access/setup
Executive Decisions Pablo (Deuna) CTO sign-off

Snowflake Schema Reference
Database: PAYMENT_ML Instance: VLTAXPW-RMONTES.snowflakecomputing.com Extracted: 2026-02-18

17

https://github.com/DUNA-E-Commmerce/DATA-Athena-Snowflake
https://github.com/DUNA-E-Commmerce/athena-platform
https://docs.google.com/spreadsheets/d/1N8lCQv3X3Jrt_Suu9DDTKhLZHsPEE2gEqt9lXesOypM/edit?gid=312089055#gid=312089055
https://lucid.app/lucidchart/7f3d9536-ef76-40c7-8b81-7cafe9e63549/edit?viewport_loc=926%2C-156%2C3262%2C1900%2Ch.0So5b9RzNJ&invitationId=inv_1f973c65-a673-45bc-a7da-4945ac39d7a2
https://vltaxpw-rmontes.snowflakecomputing.com/console/login

Overview

Schema Type Object Columns

ABTESTING Table ALL_VIEWS_FLAT ~319 (denormalized flat table)
ABTESTING Table ALL_VIEWS_FLAT_SAMPLE ~319 (sample of above)
SOURCES View VW_ATHENA_CHANNEL 2
SOURCES View VW_ATHENA_ORDER 85
SOURCES View VW_ATHENA_ORDER_COMPLEMENT 11
SOURCES View VW_ATHENA_PAYMENT 46
SOURCES View VW_ATHENA_PAYMENT_ATTEMPT 39
SOURCES View VW_ATHENA_PAYMENT_EVENTS 28
SOURCES View VW_ATHENA_TARGET_USER 40
SOURCES View VW_ORDER_AIRLINE_DETAIL_ALL 29
SOURCES View VW_ORDER_AIRLINE_INFORMATION_DETAIL_ALL 51
SOURCES View VW_ROUTING_MERCHANT_RULE 14
SOURCES View VW_ROUTING_MERCHANT_RULE_CONDITION 16
SOURCES View VW_ROUTING_MERCHANT_RULE_MEMBER 15
SOURCES View VW_ROUTING_MERCHANT_RULE_OPTION 8
SOURCES View VW_ROUTING_MERCHANT_RULE_OPTION_VALUES 8
SOURCES View VW_SMART_ROUTING_ATTEMPTS 40

Schema: ABTESTING
Denormalized flat tables joining all Athena views — used for A/B testing analysis.

ALL_VIEWS_FLAT / ALL_VIEWS_FLAT_SAMPLE

Both tables share the same ~319 columns. ALL_VIEWS_FLAT_SAMPLE is a sampled subset.

Key column groups:

Group Columns

Identity SOURCE_TABLE_NAME, CHANNEL_ID, CHANNEL_NAME,
COMMERCE_ID, TARGET_USER_ID, USER_ACCOUNT_ID

Order ORDER_ID, ORDER_DATE, ORDER_TIME, ORDER_STATUS,
ORDER_TOKEN, COMMERCE_STORE_CODE

Order Indicators ORDER_APPROVED_INDICATOR, ORDER_REJECTED_INDICATOR,
ORDER_SEND_TO_SMART_ROUTING_INDICATOR,
ORDER_RECOVERED_BY_SMART_ROUTING_INDICATOR,
ORDER_APPROVED_BY_FIRST_PROCESSOR_INDICATOR,
ORDER_DENIED_BY_FRAUD_INDICATOR,
ORDER_DENIED_BY_PROCESSOR_INDICATOR

Order Amounts ORDER_ORIGINAL_GMV_AMOUNT, ORDER_GMV_AMOUNT_USD,
ORDER_AUTH_AMOUNT_USD, ORDER_CAPTURE_AMOUNT_USD,
ORDER_TOTAL_AMOUNT_USD

Payment PAYMENT_ID, PAYMENT_DATE, PAYMENT_STATUS,
PROCESSOR_NAME, PAYMENT_AMOUNT_USD

18

Group Columns

Payment Attempt PAYMENT_ATTEMPT_ID, PAYMENT_ATTEMPT_SEQUENCE_ORDER,
PAYMENT_ATTEMPT_STATUS,
PAYMENT_ATTEMPT_PROCESSOR_NAME,
PAYMENT_ATTEMPT_ERROR_CODE,
PAYMENT_ATTEMPT_APPROVED_INDICATOR

Event EVENT_TYPE, EVENT_STATUS, EVENT_CREATED_AT,
EVENT_ERROR_CODE, EVENT_ERROR_STANDARD_ERROR_CODE

Card CARD_BIN, CARD_BRAND, CARD_LAST_FOUR, CARD_COUNTRY, BANK
Fraud FRAUD_PROCESSOR_NAME, FRAUD_RISK_LEVEL,

FRAUD_RISK_SCORE, FRAUD_STATUS
User TARGET_USER_BROWSER, TARGET_USER_OS,

TARGET_USER_DEVICE, TARGET_USER_FRAUD_RATE_COHORT,
TARGET_USER_TENURE_IN_DAYS

Routing Rules RULE_ID, PROPERTIES__RULES_LABEL,
MERCHANT_PAYMENT_PROCESSOR_NAME,
COMMERCE_ROUTING_MERCHANT_RULE_VERSION_ID

Geo LATITUDE, LONGITUDE, ORDER_CITY_NAME, ORDER_STATE_NAME,
ORDER_COUNTRY_CODE, WEATHER_MAIN

Airline PNR, FLIGHT_NUMBER, CARRIER_CODE,
DESTINATION_IATA_CODE, TOTAL_PASSENGER

Schema: SOURCES
Raw source views feeding the ABTESTING schema. Join key across most views: COMMERCE_ID, ORDER_ID,
PAYMENT_ID, PAYMENT_ATTEMPT_ID.

VW_ATHENA_CHANNEL (2 cols)

Channel lookup table.

Column Type

CHANNEL_ID NUMBER(5,0)
CHANNEL_NAME VARCHAR

VW_ATHENA_ORDER (85 cols)

Core order-level data including status, amounts, payment method, behavioral signals, and geo.

Column Type Notes

COMMERCE_ID VARCHAR Merchant ID
TARGET_USER_ID VARCHAR(32) User ID
USER_ACCOUNT_ID VARCHAR(32)
CHANNEL_ID NUMBER
ORDER_ID VARCHAR Primary key
ORDER_DATE / ORDER_TIME DATE / TIME
ORDER_STATUS VARCHAR

19

Column Type Notes

ORDER_APPROVED_INDICATOR BOOLEAN
ORDER_SEND_TO_SMART_ROUTING_INDICATOR BOOLEAN Was smart routing used?
ORDER_RECOVERED_BY_SMART_ROUTING_INDICATOR BOOLEAN Did smart routing recover?
ORDER_DENIED_BY_FRAUD_INDICATOR BOOLEAN
ORDER_ORIGINAL_GMV_AMOUNT / _USD FLOAT
ORDER_AUTH_AMOUNT_USD FLOAT
ORDER_TOTAL_AMOUNT_USD FLOAT
PAYMENT_CURRENCY VARCHAR
CARD_LAST_FOUR / CARD_COUNTRY VARCHAR
DEVICEID / REQUEST_IP VARCHAR
USER_IS_GUEST BOOLEAN
TOTA_MINUTES_BROWSING NUMBER Behavioral feature
TOTAL_EVENTS_BEFORE_PURCHASE NUMBER Behavioral feature
TOTAL_NUM_SESSIONS NUMBER Behavioral feature
LATITUDE / LONGITUDE NUMBER
WEATHER_MAIN VARCHAR
ORDER_TOKEN VARCHAR(100)

VW_ATHENA_ORDER_COMPLEMENT (11 cols)

Fraud and 3DS signals at the order level.

Column Type

COMMERCE_ID VARCHAR
CHANNEL_ID NUMBER
ORDER_ID VARCHAR
FRAUD_PROCESSOR_NAME VARCHAR
FRAUD_RISK_LEVEL VARCHAR
FRAUD_RISK_SCORE FLOAT
FRAUD_STATUS VARCHAR
SITEDOMAIN VARCHAR
WEBSITENAME VARCHAR
CHALLENGE_3DS_INDICATOR BOOLEAN
CHALLENGE_3DS_STATUS VARCHAR

VW_ATHENA_PAYMENT (46 cols)

Payment-level data: processor, card info, error codes, routing rules.

Column Type Notes

PAYMENT_ID VARCHAR(250) Primary key
ORDER_ID VARCHAR FK → Order
PAYMENT_DATE / PATMENT_TIME DATE / TIME Note: typo in source (PATMENT)

20

Column Type Notes

PAYMENT_STATUS VARCHAR
PROCESSOR_NAME VARCHAR
CARD_BIN / CARD_BRAND / BANK VARCHAR
NUM_ATTEMPTS_ORDER NUMBER
NUM_ATTEMPTS_SMART_ROUTING NUMBER
ERROR_MESSAGE / ERROR_CODE / ERROR_CATEGORY VARCHAR
PAYMENT_AMOUNT_USD FLOAT
HARD_SOFT VARCHAR Hard vs soft decline
RULE_ID VARCHAR Routing rule applied
PROPERTIES__RULES_LABEL VARCHAR
MERCHANT_PAYMENT_PROCESSOR_NAME VARCHAR
MERCHANT_PAYMENT_PROCESSOR_ID VARCHAR
PREVIOUS_ORDER_ERROR_CODE VARCHAR Prior attempt context
PREVIOUS_ORDER_PROCESSOR VARCHAR
AUTHORIZATION_CODE VARCHAR
COMMERCE_ROUTING_MERCHANT_RULE_VERSION_ID VARCHAR(36)

VW_ATHENA_PAYMENT_ATTEMPT (39 cols)

Individual attempt-level data — key table for retry optimization.

Column Type Notes

PAYMENT_ATTEMPT_ID VARCHAR(32) Primary key
PAYMENT_ID VARCHAR(250) FK → Payment
ORDER_ID VARCHAR FK → Order
PAYMENT_ATTEMPT_SEQUENCE_ORDER NUMBER Attempt number
PAYMENT_LAST_ATTEMPT_INDICATOR BOOLEAN
PAYMENT_ATTEMPT_STATUS VARCHAR
PAYMENT_ATTEMPT_PROCESSOR_NAME VARCHAR Which processor used
PAYMENT_ATTEMPT_PROCESSOR_CODE VARCHAR
PAYMENT_ATTEMPT_ERROR_CODE VARCHAR
PAYMENT_ATTEMPT_ERROR_CATEGORY VARCHAR
PAYMENT_ATTEMPT_HARD_SOFT_TYPE VARCHAR
PAYMENT_ATTEMPT_RETRY_INDICATOR VARCHAR
PAYMENT_ATTEMPT_APPROVED_INDICATOR BOOLEAN
PAYMENT_ATTEMPT_ACCEPTANCE_RATE_INDICATOR BOOLEAN
PAYMENT_ATTEMPT_AMOUNT_USD FLOAT
PAYMENT_ATTEMPT_CARD_BRAND / CARD_BIN / BANK VARCHAR
DENIED_BY_PSP_OR_FRAUD VARCHAR
DYNAMIC_ROUTING_DETAIL VARIANT JSON routing detail
RULE_ID VARCHAR
MERCHANT_PAYMENT_PROCESSOR_ID VARCHAR
COMMERCE_ROUTING_MERCHANT_RULE_VERSION_ID VARCHAR(36)

21

VW_ATHENA_PAYMENT_EVENTS (28 cols)

Event stream for each payment attempt — captures state transitions.

Column Type Notes

PAYMENT_ATTEMPT_ID VARCHAR(32) FK → Attempt
PAYMENT_ATTEMP_EVENT_INDEX NUMBER Event order within attempt
EVENT_TYPE VARCHAR
EVENT_STATUS VARCHAR
EVENT_CREATED_AT TIMESTAMP_NTZ
EVENT_ORIGINAL_TOTAL_AMOUNT NUMBER
EVENT_ERROR_CODE VARCHAR
EVENT_ERROR_STANDARD_ERROR_CODE VARCHAR Normalized error code
EVENT_ERROR_STANDARD_ERROR_MESSAGE VARCHAR
EVENT_ERROR_DEUNA VARCHAR Deuna-specific error
EVENT_REFUND_VOID_REASON VARCHAR

VW_ATHENA_TARGET_USER (40 cols)

User profile and behavioral signals.

Column Type Notes

TARGET_USER_ID VARCHAR(32) Primary key
COMMERCE_ID VARCHAR
TARGET_USER_BROWSER / OS / DEVICE / EQUIPMENT VARCHAR Device fingerprint
TARGET_USER_FAVORITE_PAYMENT_METHOD VARCHAR
TARGET_USER_FAVORITE_CARD_BRAND / BANK VARCHAR
TARGET_USER_ACCESS_COUNTRY_CODE VARCHAR
TARGET_USER_FIRST_PURCHASE_DATE TIMESTAMP
TARGET_USER_LAST_PURCHASE_DATE TIMESTAMP
TARGET_USER_USER_FRAUD_RATE NUMBER
TARGET_USER_FRAUD_RATE_COHORT VARCHAR(30)
TARGET_USER_TENURE_IN_DAYS NUMBER
TARGET_USER_FREQUENCY_VALUE NUMBER RFM frequency
TARGET_USER_RECENCY_VALUE NUMBER RFM recency
TARGET_USER_MONETARY_VALUE FLOAT RFM monetary
TARGET_USER_NUM_ORDERS_VALUE NUMBER

VW_ORDER_AIRLINE_DETAIL_ALL (29 cols)

Airline booking details (Volaris-specific). Joined via ORDER_ID.

Key fields: PNR, BOOKINGISINTERNATIONAL, NAVITAIRE_CARRIER_CODE, TOTAL_FLIGHT_NUMBERS, TOTAL_PASSENGER,
ROUND_FLIGHT_IND

22

VW_ORDER_AIRLINE_INFORMATION_DETAIL_ALL (51 cols)

Flight + passenger details per order. Joined via ORDER_ID.

Key fields: FLIGHT_NUMBER, CARRIER_CODE, ORIGIN_IATA_CODE, DESTINATION_IATA_CODE, PASSENGER_TYPE,
PASSENGER_FREQUENT_FLYER_CODE, SERVICE_CLASS, TOTAL_AMOUNT_USD

VW_ROUTING_MERCHANT_RULE (14 cols)

Merchant routing rules configuration.

Column Type

ID NUMBER
MERCHANT_ID VARCHAR
LABEL VARCHAR
STATUS VARCHAR
PRIORITY NUMBER
TRIGGER_ VARCHAR
IS_DEFAULT VARCHAR
IGNORE_NEXT_RULES VARCHAR
MERCHANT_RULE_PARENT NUMBER
CREATED_AT / UPDATED_AT / DELETED_AT TIMESTAMP

VW_ROUTING_MERCHANT_RULE_CONDITION (16 cols)

Conditions that trigger routing rules.

Key fields: MERCHANT_RULE_ID, MERCHANT_RULE_OPTION_ID, OPERAND, OPERAND_FIELD_TO_EVALUATE, OPERATOR,
METADATA_FIELD_NAME

VW_ROUTING_MERCHANT_RULE_MEMBER (15 cols)

Processors assigned to routing rules.

Key fields: MERCHANT_RULE_ID, PAYMENT_PROCESSOR_ID, MERCHANT_PAYMENT_PROCESSOR_ID, STRATEGY, SORT,
SHADOW_MODE, CAPABILITIES, FRAUD_PROCESSOR

VW_ROUTING_MERCHANT_RULE_OPTION (8 cols)

Available routing rule option types.

Key fields: ID, LABEL, OPERATORS_AVAILABLE

VW_ROUTING_MERCHANT_RULE_OPTION_VALUES (8 cols)

Allowed values for routing rule options.

Key fields: ID, MERCHANT_RULE_OPTION, VALUE_

23

VW_SMART_ROUTING_ATTEMPTS (40 cols)

Event stream from the smart routing engine — per-attempt routing decisions.

Column Type Notes

ATTEMPT_ID NUMBER
PROPERTIES_TRANSACTION_ID VARCHAR Links to payment
PROPERTIES_MERCHANT_ID VARCHAR
PROPERTIES_ALGORITHM_TYPE VARCHAR Which routing algorithm
RULE_ID NUMBER Rule applied
PROPERTIES_GATEWAY BOOLEAN
PROPERTIES_PAYMENT_PROCESSOR_ID NUMBER
PROPERTIES_PROCESSOR_CODE VARCHAR
PROPERTIES_RESULT_STATUS VARCHAR
PROPERTIES_RESULT_ERROR_CODE VARCHAR
PROPERTIES_RESULT_PROCESS_TIME FLOAT Latency signal
PROPERTIES_RESULT_SKIPPED_REASON VARCHAR Why processor was skipped
PROPERTIES_FRANCHISE / COUNTRY / CITY / STATE VARCHAR
PROPERTIES_ORDER_VALUE NUMBER
ORIGINAL_TIMESTAMP / RECEIVED_AT TIMESTAMP

Key Relationships
VW_ATHENA_CHANNEL

��� CHANNEL_ID → VW_ATHENA_ORDER

VW_ATHENA_ORDER
��� ORDER_ID → VW_ATHENA_ORDER_COMPLEMENT
��� ORDER_ID → VW_ATHENA_PAYMENT
��� ORDER_ID → VW_ORDER_AIRLINE_DETAIL_ALL
��� ORDER_ID → VW_ORDER_AIRLINE_INFORMATION_DETAIL_ALL
��� TARGET_USER_ID → VW_ATHENA_TARGET_USER

VW_ATHENA_PAYMENT
��� PAYMENT_ID → VW_ATHENA_PAYMENT_ATTEMPT
��� RULE_ID → VW_ROUTING_MERCHANT_RULE

VW_ATHENA_PAYMENT_ATTEMPT
��� PAYMENT_ATTEMPT_ID → VW_ATHENA_PAYMENT_EVENTS
��� PROPERTIES_TRANSACTION_ID → VW_SMART_ROUTING_ATTEMPTS

VW_ROUTING_MERCHANT_RULE
��� ID → VW_ROUTING_MERCHANT_RULE_CONDITION
��� ID → VW_ROUTING_MERCHANT_RULE_MEMBER

ABTESTING.ALL_VIEWS_FLAT
��� Denormalized join of all above views

24

	Smartrouter Scoping Project Plan
	Overview
	Goals & Success Criteria
	Purpose
	Phase 0 Deliverables (Current Focus)
	Success Criteria (Phase 0)
	Longer-Term Success Criteria (Post-Scoping)
	In Scope (Phase 0 — Assessment Only)
	Out of Scope (Phase 0)

	Stakeholders
	Milestones & Timeline
	Key Use Cases (P0)
	Work Breakdown / Task Tracking
	Backlog
	In Progress
	Done

	Schema Understanding & Data Notes
	Overall Assessment
	Key Tables for P0 Use Cases
	Feature Richness for ML Models
	Starting Point Recommendation
	Notable Data Quality Observations

	Technical Gaps (from SOW)
	Testing/Experimentation Platform — Production Ready
	Training Platform — Prototype Only (needs significant work)

	Next Steps
	Immediate Blockers to Resolve
	Phase 0 Assessment Work
	Documentation & Alignment

	Decisions Log
	Open Questions
	Risks & Issues
	Repository Analysis & Code Intelligence
	Repo 1: DATA-Athena-Snowflake — LLM Analytics Platform
	Repo 2: athena-platform — ML Serving & Experimentation Platform
	Impact on Effort Estimates

	Testing Coverage & Architecture Deep-Dive
	DATA-Athena-Snowflake — Testing Coverage
	DATA-Athena-Snowflake — Architecture
	athena-platform — Testing Coverage
	athena-platform — Architecture
	Testing Summary — Both Repos
	Open Questions Raised by Repo Analysis

	Notes & Meeting Log
	2026-02-19 (late)
	2026-02-19 (afternoon)
	2026-02-19
	2026-02-18

	Project Plan Exports
	Documents & SOW Snapshots
	References & Links

	Teams & Stakeholders
	Deuna
	Aidaptive
	Key Contacts by Topic

	Snowflake Schema Reference
	Overview
	Schema: ABTESTING
	ALL_VIEWS_FLAT / ALL_VIEWS_FLAT_SAMPLE

	Schema: SOURCES
	VW_ATHENA_CHANNEL (2 cols)
	VW_ATHENA_ORDER (85 cols)
	VW_ATHENA_ORDER_COMPLEMENT (11 cols)
	VW_ATHENA_PAYMENT (46 cols)
	VW_ATHENA_PAYMENT_ATTEMPT (39 cols)
	VW_ATHENA_PAYMENT_EVENTS (28 cols)
	VW_ATHENA_TARGET_USER (40 cols)
	VW_ORDER_AIRLINE_DETAIL_ALL (29 cols)
	VW_ORDER_AIRLINE_INFORMATION_DETAIL_ALL (51 cols)
	VW_ROUTING_MERCHANT_RULE (14 cols)
	VW_ROUTING_MERCHANT_RULE_CONDITION (16 cols)
	VW_ROUTING_MERCHANT_RULE_MEMBER (15 cols)
	VW_ROUTING_MERCHANT_RULE_OPTION (8 cols)
	VW_ROUTING_MERCHANT_RULE_OPTION_VALUES (8 cols)
	VW_SMART_ROUTING_ATTEMPTS (40 cols)

	Key Relationships

